
Dissertation

FuzzyARDEN: Representation and Interpretation of Vague

Medical Knowledge by Fuzzified Arden Syntax

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr. techn. K.-P. Adlassnig

Abteilung für Medizinische Experten- und Wissensbasierte Systeme am

Institut für Medizinische Computerwissenschaften

eingereicht an der Technischen Universität Wien

Fakultät für Technische Naturwissenschaften und Informatik

von

Dipl. Inform. Sven Tiffe

Sven.Tiffe@web.de

Wien, im Januar 2003

Zusammenfassung

Die Wissensrepräsentation ist ein grundlegender Forschungsbereich im Gebiet der Künst-
lichen Intelligenz. Ein Ansatz zur Repräsentation medizinischen Wissens liegt in der “Ar-
den Syntax for Medical Knowledge Systems”. Mit der Arden Syntax können modulare
Entscheidungsregeln definiert werden, deren zweiwertige Entscheidungslogik durch Algo-
rithmen beschrieben wird.

Medizinisches Wissen enthält häufig Unsicherheiten im Sinne linguistischer Vagheit. Soll
vages Wissen durch Regeln repräsentiert werden, welche auf binären Entscheidungen
basieren, kann es in Grenzfällen vorkommen, dass die Ergebnisse nicht mehr intuitiv
nachvollziehbar sind. Durch Anwendung der Fuzzy Mengentheorie und der Fuzzy Logik
kann vages Wissen präzise repräsentiert und verarbeitet werden. Diese Arbeit stellt Ideen
und Lösungen vor, mit denen die Arden Syntax um Konzepte der Fuzzy Mengentheo-
rie und der Fuzzy Logik erweitert wird, um Regeln mit inhärenter linguistischer Vagheit
adäquat darstellen zu können.

Ein Grundprinzip der Fuzzy Mengentheorie, der graduelle Zugehörigkeitsgrad eines Ele-
mentes zur Menge, wird auf konditionale Elemente der Arden Syntax angewandt. Kon-
ditionale Ausdrücke, die häufig Teil der Entscheidungslogik sind, nutzen normalerweise
Vergleichsoperatoren, welche eine Bedingung durch vordefinierte Grenzwerte modellieren
und einen Booleschen Wahrheitswert ermitteln. Durch die Erweiterung ausgewählter
Vergleichsoperatoren um eine graduelle Erfüllbarkeit der Bedingung ergeben diese Op-
eratoren in Grenzfällen einen unscharfen, mehrwertigen Wahrheitswert. So können Wis-
senskonzepte mit vagem Definitionsbereich durch “unscharfe” Vergleiche repräsentiert wer-
den.

Die sich aus der Nutzung unscharfer Wahrheitswerte ergebenden Probleme von ‘Fuzzy
Algorithmen’ werden behandelt und durch eine funktionale Erweiterung von Entschei-
dungselementen der Arden Syntax sowie durch eine Erweiterung des Datenmodells gelöst.
Die Einbindung des Konzeptes ‘linguistischer Variablen’ schliesst die Erweiterungen der
Arden Syntax ab. Variablen dieses Typs abstrahieren die Beziehungen zwischen linguis-
tischen Ausdrücken und numerischen Messwerten und können den intuitiv lesbaren Anteil
der Entscheidungslogik erhöhen.

Die vorgestellten Erweiterungen werden in einer Java basierten Arden Syntax ‘rules engine’
implementiert, welche “fuzzifizierte” Arden Syntax Regeln lesen und ausführen kann. Die
‘rules engine’ wurde in zwei klinischen Projekten verwendet. Die Wissensbasis des Ex-
pertensystems CADIAG-II zur Unterstützung der Differentialdiagnostik in der internen
Medizin wurde erfolgreich in Fuzzy Arden repräsentiert. Ein Fuzzy Control basierter
Klassifizierer zur Erkennung von Glaukom wurde durch Verwendung von linguistischen
Variablen implementiert.

Abstract

The representation of knowledge is one of the fundamental research areas in the realm of
artificial intelligence. One approach to this subject was provided by the Arden Syntax for
Medical Logic Systems. The Arden Syntax is a hybrid knowledge representation format
that allows one to define rules as single modules that use algorithms in their conditional
part. It includes typical procedural programming language elements used to define a crisp
decision logic based on binary decisions.

However, medical knowledge usually contains uncertainty in terms of linguistic fuzziness.
If such knowledge is represented by rules that require binary decisions, the results of the
rules might be unintuitive when they touch borderline cases. As such uncertainty can be
precisely represented and manipulated by concepts of fuzzy set theory and fuzzy logic, this
thesis presents ideas and solutions for extending Arden Syntax by concepts of fuzzy set
theory, fuzzy logic, and fuzzy control to adequately represent rules with inherent linguistic
uncertainty.

Fuzzy sets define a gradual degrees of membership of their elements to the set instead of
crisp ones. This principle is applied to conditional expressions that are part of the decision
logic: Such expressions usually include comparison operators that compare a fact to pre-
defined thresholds. With traditional Arden Syntax these conditional expressions return a
Boolean truth value; by applying the concept of a gradual degree of membership (or, in
other words, a gradual degree of compatibility of the fact to the condition) to a subset
of the comparison operators, the conditional expressions return in borderline cases fuzzy
truth values instead of crisp ones. By this, fuzzily defined concepts can be represented by
fuzzified comparisons.

The definition of fuzzy truth values has an impact on the algorithmic elements of the
Arden Syntax, as operations, such as branches in program flow, may depend on a truth
value that is neither ‘true’ nor ‘false’. The problem of fuzzy algorithms is addressed and
resolved by extending the functionality of the corresponding statements and by extending
the data model of the Arden Syntax. As further extension, the thesis proposes a new
type of Arden Syntax module, the ‘linguistic variable’ module. This type defines the
relationship of linguistic concepts to real-world facts and can be used to increase the
amount of intuitively readable parts of the decision logic in an Arden Syntax module or
to realize fuzzy control knowledge bases.

All extensions have been realized by a Java based Arden Syntax rules engine that is able
to read and execute the fuzzified Arden Syntax modules. It has been used for two clinical
projects: The knowledge base of the existing expert system CADIAG-II for diagnostic
decision support in internal medicine has been successfully realized by Fuzzy Arden. The
syntax has been also used to realize a fuzzy control based glaucoma classifier.

Contents

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Knowledge representation . 2

1.1.1 Predicate logic . 5

1.1.2 Semantic nets . 8

1.1.3 Frames and inheritance systems . 10

1.1.4 Production rules . 11

1.1.5 Usability aspects of representation formats in clinical context 12

1.2 Representing uncertain knowledge . 13

1.2.1 Sources of uncertainty . 13

1.2.2 Historical roots of the formalization of vagueness in natural language 14

1.2.3 Vague categories and their elements 16

1.3 Fuzziness theories . 18

1.3.1 Fuzzy set theory . 19

1.3.2 Linguistic variables . 23

1.3.3 Fuzzy control . 24

1.3.4 Fuzzy algorithms . 26

1.4 The Arden Syntax for Medical Logic Systems 28

1.4.1 General aspects . 29

1.4.2 Arden in use . 31

1.4.3 Current state . 32

i

ii CONTENTS

2 Fuzzy Arden Syntax 35

2.1 Elements of the Arden Syntax . 35

2.1.1 Data types . 37

2.1.2 Logic . 38

2.1.3 Programming language . 39

2.2 Conceptual models of the extensions . 42

2.2.1 Fuzzy operators: fuzzy sets and fuzzy truth values as model for fuzzy
comparisons . 43

2.2.2 Fuzzy data: effects of conditional contexts on algorithmic elements . 44

2.2.3 Default ‘degree of presence’ handling 50

2.3 Definition of the extensions . 51

2.3.1 Fuzzy data model . 51

2.3.2 Fuzzy operators . 52

2.3.3 Crisp operators . 60

2.3.4 Statements for program flow control 64

2.4 Linguistic variables . 75

2.4.1 Initialization of linguistic variable MLMs 78

2.4.2 Use of linguistic variables by common MLMs 80

3 Application of methods 84

3.1 Design and implementation of the rules engine 84

3.1.1 Java class model . 85

3.1.2 Runtime processes . 90

3.1.3 Design of the interfaces . 93

3.1.4 Testing . 99

3.2 CADIAG-II/RHEUMA+Arden . 100

3.2.1 Introduction . 100

3.2.2 Pre-processing of the input files . 106

3.2.3 Creation of the MLMs: highly modular approach 107

3.2.4 Creation of the MLMs: compact knowledge base 112

3.2.5 Report generation . 119

3.2.6 Helper MLMs and interfaces . 121

3.2.7 New operators . 123

3.2.8 Acknowledgements . 124

3.3 Glaucoma monitoring . 124

3.3.1 Introduction . 124

3.3.2 Creation of the MLMs . 126

CONTENTS iii

4 Results and discussion 129

4.1 General aspects . 129

4.1.1 Fuzzy comparisons as model of vague categories 130

4.1.2 Use of fuzzy conditional statements 131

4.1.3 Native extension of the syntax versus use of MLM library 132

4.2 Implementation of a rules engine . 134

4.2.1 Compilation of Medical Logic Modules 134

4.2.2 Java class model . 138

4.2.3 Performance . 139

4.2.4 Event handling . 140

4.2.5 MLM authoring . 141

4.3 CADIAG-II/RHEUMA+Arden . 142

4.3.1 Performance and readability . 142

4.3.2 Inference results . 146

4.4 Glaucoma monitoring . 152

4.4.1 Medical aspects . 152

4.4.2 Technical aspects . 152

5 Conclusion 154

A Bibliography 158

B Fuzzy Arden Syntax BNF 164

B.1 Changes in the BNF for Fuzzy Arden without linguistic variables 164

B.2 Further changes in the BNF for Fuzzy Arden including linguistic variables . 166

C Cadiag-II 169

C.1 Implication operator . 169

C.2 Inference operator . 171

C.3 Post-processing of radiological findings . 172

C.4 Ratings: differences to printout . 174

C.5 Result XML . 178

C.5.1 DTD . 178

C.5.2 XSLT stylesheet . 178

C.5.3 Benchmark MLMs . 182

D MLM XML representation (DTD) 187

E UltraEdit syntax highlighting scheme 189

List of Figures

1.1 Model of the architecture of a knowledge-based system (following [Bib93]) . 3

1.2 Sources of uncertainty . 14

1.3 Process of abstraction . 17

1.4 Characteristic function of the set of real numbers which are greater than 18 20

1.5 Parameterizable s-/z-type compatibility function 21

1.6 Parameterizable linear compatibility function 22

1.7 Fuzzy sets for “child” and “adult” . 22

1.8 Fuzzy union, intersection, and complement by using equations 1.14 to 1.16 . 23

1.9 Linguistic variable ‘IOP’ (intraocular pressure) 24

1.10 Structure of fuzzy control rule sets . 25

1.11 Reaction of production rules for a given numerical input value 25

2.1 Sample MLM: contraindication alert (taken from [Hls99]) 36

2.2 Membership function of a fuzzified ‘is within to’ operator 44

2.3 Conditional context . 46

2.4 Selection of test results from a previous period 48

2.5 Fuzzy operator: compatibility function ’is equal’ 53

2.6 Fuzzy operator: compatibility function ’is not equal’ 53

2.7 Fuzzy operator: compatibility function ’is less than’ 54

2.8 Fuzzy operator: compatibility function ’is less than or equal’ 54

2.9 Fuzzy operator: compatibility function ’is greater than’ 55

2.10 Fuzzy operator: compatibility function ’is greater than or equal’ 55

2.11 Fuzzy operator: compatibility function ’is within to’ 56

2.12 Fuzzy operator: compatibility function ’is within preceding’ 56

2.13 Fuzzy operator: compatibility function ’is within following’ 57

2.14 Fuzzy operator: compatibility function ’is within surrounding’ 58

2.15 Fuzzy operator: compatibility function ’is within past’ 58

2.16 Fuzzy operator: compatibility function ’is within same day as’ 59

2.17 Fuzzy operator: compatibility function ’is before’ 59

iv

LIST OF FIGURES v

2.18 Fuzzy operator: compatibility function ’is after’ 60

2.19 Scheme for a fuzzy ‘if-then’ statement . 65

2.20 Scheme for a nested fuzzy if-then statement 69

2.21 Schema of a fuzzy ‘while’ loop . 70

2.22 Representation of linguistic variable elements by an MLM 76

2.23 Linguistic variable ‘blood count, platelets’ 77

2.24 Piecewise linear definition of a compatibility function 79

3.1 Communication between information system and rules engine 85

3.2 Package diagram of the class model . 86

3.3 Java class structure of an MLM . 87

3.4 Java class structure of statements and operators (outtake) 89

3.5 Receiving and scheduled events . 91

3.6 Architecture of the rules engine . 93

3.7 Main administration screen of the rules engine 98

3.8 Knowledge base user interface of the rules engine 99

3.9 MLM representation as XML/HTML . 100

3.10 Hierarchical structure of a CADIAG-II disease definition. 102

3.11 Structure of the CADIAG-II inference process 103

3.12 Structure of typical symptom combination 105

3.13 Structure of the modular CADIAG-II/Arden representation 108

3.14 Recursiveness of the knowledge base . 108

3.15 Inference MLMs used by the compact knowledge base 112

3.16 Structure of the CADIAG XML result file 120

3.17 Cadiag sample result displayed as HTML e-mail (1) 121

3.18 Cadiag sample result displayed as HTML e-mail (2) 121

3.19 Structure of the intermediate variable storage 122

3.20 Structure of the classifier . 125

3.21 Structure of the monitoring application . 126

3.22 Structure of the fuzzy control rule set . 126

3.23 Arden Syntax linguistic variable MLM: IOP 127

4.1 MLM representation by cross-compilers: source MLM 135

4.2 MLM representation by cross-compilers: result 136

4.3 Example MLM representation by Java object tree 137

4.4 Distribution of related knowledge by the modular approach (left) and the
compact approach (right) . 142

List of Tables

1.1 �Lukasiewicz first three-valued logical operators truth-tables 8

2.1 Arden Syntax logical operators truth-tables 39

2.2 Fuzzy and crisp Arden Syntax data values 51

2.3 Fuzzy logical operators truth-tables . 63

2.4 Results of example 22 . 68

3.1 Fuzzy logical operators truth-tables used by CADIAG-II 105

4.1 Performance of the rules engine . 139

4.2 Overall differences of intermediate combination ratings per patient 147

4.3 Overall differences of diagnosis ratings (in sum: 1234 ratings) 148

4.4 Selected differences of diagnosis ratings between reduced and complete in-
ference process . 150

4.5 Differences in diagnosis ratings between alternative logical operators and
classical (Fuzzy) Arden Syntax logical operators 151

4.6 Performance of the Fuzzy Arden-based glaucoma classifier 153

C.1 Definition of the CADIAG-II inference operator. 169

C.2 Definition of the CADIAG-II inference operator. 171

C.3 Detailed differences of intermediate combination ratings between original
CADIAG-II system (O) and Arden Syntax-based system (A) 174

C.4 Detailed differences of diagnosis ratings (1) 175

C.5 Detailed differences of diagnosis ratings (2) 176

C.6 Detailed differences of diagnosis ratings (3) 177

vi

Acknowledgements

First and foremost I wish to thank my parents Anna Maria and Ingo without whom I
would have been unable to write these words here - in every sense of the term.

Of course I also wish to thank all friends and colleagues who helped me in writing this
thesis.

I am indebted to Professor Klaus-Peter Adlassnig from the University of Vienna for his
expert guidance of this thesis and his persistence - he never stopped teaching me until he
was absolutely certain I had understood everything he wanted me to know. Thank you
very much for your patience (and, occasionally, your persistence). I was indeed able to
learn a lot from you.

I’d also like to thank Dr. Gudrun Zahlmann and Mr. Werner Striebel from Siemens
Medical Solutions for their subject-based as well as organizational support (and of course
for their complete financial assistance) of my paper. The same applies to Dr. Siegfried
Schneider, Dr. Harm Scherpbier and Mr. Pat Lyons of Siemens Medical Solutions for their
willingness to discuss various subjects with me as well as their organizational support.
These persons assisted me on both sides of the Atlantic (their pragmatic viewpoint, in
part, skilfully steered me from my flights of fancy to the facts of reality).

I received subject-based assistance and also answers to my numerous gnawing questions
from Ms. Andrea Rappelsberger and Mr. Dieter Kopecky at the University of Vienna -
their contributions ranged from correction and constructive criticism of my paper to the
resolution of irregularities in the knowledge bases of our expert systems.

Without the colleagues at HL7 I would have missed out on a lot of inspiration. The
discussions at our meetings validated me for my work and also provided the right measure
of criticism and suggestions for improvement. Special thanks to my first contact persons,
Dr. Robert Jenders and Dr. John Dulcey, as well as Dr. Mike Jones, for their active
interest in my work. Of course, a big thank you to all the other members of the Arden
Syntax Special Interest Group and HL7 for their contribution to Fuzzy Arden and for
their “post-working-hour program” at our meetings.

Without the colleagues at my department in Siemens Medical Solutions I probably would
have lacked the inspiration, but I certainly would have missed out on the pleasure of my
work. Sincere thanks to my colleagues and co-students at GT/BD/THS for creating a
congenial atmosphere at the office, for the many laughs and the delicious coffee.

Finally I wish to thank the person who had to put up with me at home, who gave me
her back-up and instilled confidence, and especially gave me a lot of support over the last
few months - my dear Juliane. A great many things would have been difficult to tolerate
without you. I’m glad you were by my side.

My most heartfelt thanks to all of you.

vii

viii

Chapter 1

Introduction

Daily work in health care requires an ongoing assessment of facts and decisions in diagnos-
tic and therapeutic processes. Medical staff are often compelled to overlook a large body
of facts owing their very magnitude. As result, decision making is rendered difficult by
incomplete or erroneous information. The workload is further increased by new methods
of therapy and observation, such as monitoring the data of patients with chronic diseases.
Computer-based systems that support decision-making by automatically processing huge
quantities of data could assist specialists in this everyday task and reduce the burden
on clinical staff. Uncommon situations that exceed the confines of daily routine may be
supported by systems that make the knowledge and experience of experts accessible to
non-experts.

In the past decades the development of such knowledge-based systems or, more specifically,
medical expert systems, made significant progress. Knowledge-based systems are part of
the science of artificial intelligence (AI), which has been variously defined in the past 50
years.

In an early report in 1963 Minsky defined AI as “the science of making machines do
things that would require intelligence if done by men”. In this early stage of artificial
intelligence, which can be characterized as ‘power-based approach, one goal was to achieve
very general and domain independent methods for solving problems by knowledge-based
systems [GRS00].

As such generalized systems could not be easily realized, in the beginning of the 70s the
focus in AI shifted to the development of systems that work with domain specific knowl-
edge (the ‘knowledge-based approach). Such systems are generally computer programs
characterized by the use of an inference mechanism and a knowledge base that explicitly
represents the knowledge which is required for solving a specific problem. In contrast to
knowledge that is represented implicitly as part of the program code, an explicit knowl-
edge base can be redefined, extended, or exchanged between the knowledge-based systems
without having to alter their program code [GRS00].

To create such a knowledge base it is necessary to define a formal knowledge representation
that preferably is in a human understandable form and enables the system to act as if
it “knew” what to do. Brian Smith formulated these requirements as the “knowledge
representation hypothesis:

“Any mechanically embodied intelligent process will be comprised of struc-
tural ingredients that a) we as external observers naturally take to represent
a propositional account of the knowledge that the overall process exhibits,

1

2 CHAPTER 1. INTRODUCTION

and b) independent of such external semantical attribution, play a formal
but causal and essential role in engendering the behavior that manifests that
knowledge.” [Smi85]

Knowledge representation formats may be regarded as descriptions of formal models1 that
should be interpretable by machines as well as by humans. They include formal constructs
for the representation of knowledge and can (implicitly) include instructions as to how the
represented models can be evaluated. These formats therefore play a central role in any
knowledge-based system.

Different representation formats for knowledge have been developed over the years. The
choice of a specific knowledge representation format for solving a given problem may di-
rectly influence the simplicity of doing it. For instance, humans may find the multiplication
of two Arabic numerals easier than the multiplication of the same numbers represented
in Roman script, whereas a software-based system could easily solve both problems as
long as the necessary algorithms are formalized. On the other hand, natural language can
be easily interpreted by humans, whereas it still is a sophisticated task for a computer.
For instance, it is not difficult for humans to summarize a short novel while it would be
a task of significant magnitude for a software. Thus, a knowledge representation format
that seems to be perfect for one specific problem and one specific audience might be less
applicable for other problems or other audiences.

This thesis deals with one specific format that has been explicitly developed to model
medical knowledge, namely the “Arden Syntax for Medical Logic Systems. The Arden
Syntax was designed as a format that can be easily understood by persons who are not
computer experts or programmers, yet to define (and understand) formal medical rules
such as “if the patient has an allergy to penicillin, never administer this drug”. Generally
the formalized rules are evaluated in cases of pre-defined events, to decide whether the
current situation requires further actions or not. The result is therefore usually either
‘true’ or ‘false’.

However, in contrast to industrial systems where products are nearly identical to their
templates and production processes can be described quite accurately, medical procedures
such as the definition of diseases and the process of diagnosing or the definition and
application of therapies largely include uncertain knowledge. Medical knowledge itself is
often described originally by natural language and therefore includes linguistic vagueness.
Furthermore, findings can be uncertain if they depend on descriptions given by the patient.
Owing to the uncertainty and vagueness of knowledge, many facts cannot be properly
formalized by conditions that finally yield ‘true’ or ‘false’. The present paper defines
extensions for the Arden Syntax that include concepts of fuzzy set theory and fuzzy logic.
These extensions can then be used to model uncertain knowledge and to create reasoning
processes that are closer to human reasoning.

1.1 Knowledge representation

As knowledge-based systems assist humans in making decisions, often the term ‘decision
support’ is used as synonym for the use of expert systems. For example, users of an expert

1A model is usually used as a theoretical construct, for example a simplified representation of facts.
Formal models are models which can be described by a formal language. In addition, operational models
are models which can be used to execute operations associated with the represented facts (a formal model
may be an operational one).

1.1. KNOWLEDGE REPRESENTATION 3

system can be advised to solve problems that might exceed their personal experience, such
as to diagnose a rare disease. Daily routine tasks, such as monitoring vital parameters of
patients who suffer from chronic diseases, can be executed by an expert system that notifies
the physician only in those cases in which his personal experience and his abilities as a
human being are required2. A knowledge-based system may passively control processes
within an institution and provide additional information if the processes are not fully
under control.

The terms ’knowledge-based system’ and ‘expert system’ are not consistently defined and
used in the literature. A possible definition could be:

Definition 1 (knowledge-based system, expert system):

A knowledge-based system is a computer-based system that includes ex-
plicit knowledge represented by a fixed knowledge representation format and
an inference machine, which can infer new knowledge or conclusions from the
stored knowledge. In particular, the inference machine works independently
from the contents of the knowledge base, which need not be limited to a certain
domain.

The term expert system is commonly used for knowledge-based systems that
show characteristics derived from the behavior attributed to people who are
experts in their domain [BC90]. The knowledge of expert systems is on a
higher level than the knowledge of a (human) novice [Win92,GRS00]. They
should be able to explain the results of their inference process in a way that
can be understood by human users [AS00]. Their knowledge bases often consist
of facts (formalized statements on properties of objects) and rules (formalized
conditional statements) [Rei91,Kan92].

However, as a consistent distinction between expert systems and knowledge-based systems
is not required for this work, the two terms will be used synonymously.

knowledge
source

problem

solutionacquisition
knowledge

formalized
problem

formalized

inference
knowledge

machine

Figure 1.1: Model of the architecture of a knowledge-based system (following [Bib93])

One general structure of a knowledge-based system is shown in figure 1.1. A knowledge-
based system acquires external knowledge, computes a conclusion by using the inference
machine, and returns the result to external recipients. The common definition of knowledge

2As remarked earlier, today knowledge-based systems are usually domain specific. Although they
can reach a high level of knowledge within their own domain—for instance CADIAG-II (which will be
described in detail later) comprises knowledge about more rheumatological diseases than a non-expert
physician usually does—such systems are still limited to the domain. Knowledge-based systems usually do
not know what they do not know. A human user has the advantage of possessing more knowledge on the
one hand and the ability to view a problem from a higher abstract level on the other hand.

4 CHAPTER 1. INTRODUCTION

acquisition is limited to the definition and maintenance of the knowledge base, either by
human experts who enter their knowledge explicitly or automatically by the system itself
(for instance by statistical analysis of patient data). In addition to the knowledge base
that defines how facts relate to each other, the specific problem also has to be formalized.
For example, if the knowledge base is composed of rules that use symbols to represent
dynamic facts (such as “if the blood glucose level is significantly elevated”), all external
facts have to be acquired by formalizing it. This knowledge acquisition step is termed the
data to symbol conversion.

Definition 2 (data to symbol conversion):

The data to symbol conversion represents facts of the physical world by
assigning formal symbols. If the conversion does not yield a one-to-one map-
ping and a set or range of facts is mapped to a symbol, it might include an
abstraction of knowledge.

Once the required knowledge and the individual problem have been formalized, the in-
ference machine combines both information and computes a result that should solve the
problem. As the result may be represented in a formal way it has to be converted to
a form that can be understood by external receivers, for instance into natural language
messages, which can be easily understood by humans.

Natural language in spoken or written form is the oldest and most common representation
format of knowledge3. Although natural language is highly expressive, knowledge repre-
sented in natural language might not be the optimal choice for computer-based processing
of knowledge.

The main problem of using natural language as a computable knowledge representation
format is the ambiguity of statements because speech, a special type of language, may
have other meanings in addition to its main one. The main meaning can be described
independent of a special context (such description is a matter of semantics). Additional
meanings may be the result of contexts in speech, where the meaning depends directly on
the dialogue, for example when using idioms. In this context it is relevant to distinguish
the meaning which was intended by the speaker (or writer) and the meaning which was
interpreted by the listener (or reader)4 [Hel01].

The ambiguity of speech can be rendered unambiguous during a conversation between
humans by the context or the implicit background knowledge of the speaker and listener.
However, even if the context is defined and background knowledge is available (and the
sentence being analyzed is syntactically correct), the overall meaning from the individual
semantic meanings of the single terms and combinations could be subject to different
interpretations.

Furthermore, one fact can be represented in several ways. Intuitively ‘Every philosopher
is a human’ represents the same thought as ‘All philosophers are humans’, but formally
it requires the definition that ‘Every A is B’ equals ‘All As are Bs’. Another example is
the expression ‘The Venus is the evening star’ that has a different intuitive meaning than
‘The Venus is the Venus’ (apart from the fact that Venus is a planet and not a star).

A formalism requires that a fact (or thought) is always represented by the same expression
of symbols [�Luk51]. By this, the validity of an expression can be proved on the basis of
the external form without referring to the semantic meaning of the symbols.

3Apart from the mental representation of knowledge.
4The analysis of these relationships are a subject of pragmatics or speech act theory [SKB80]

1.1. KNOWLEDGE REPRESENTATION 5

Processing (unstructured) natural language is a separate area of research and is not ad-
dressed further in this work. However, natural language is a starting point for other
formats of formal knowledge representation in some ways. Presented below are some for-
mats that provide methods to formalize relationships and coherence between facts without
necessarily including information about the semantic meaning of facts (and sometime the
semantic meaning of the relations). Many of the more specialized knowledge representa-
tion formats make use of one or more of these basic methods.

1.1.1 Predicate logic

One way to represent knowledge and to infer conclusions in the way humans would do
is to use logical expressions [Rei91]. Anyhow, logic is not the science of human thinking
but can be used as a tool to formalize relationships between facts. In Ancient Greece
there was a dispute among philosophers as to whether logic is a part of philosophy or just
a tool, or both. One answer to this dispute was to treat logic as part of philosophy if
syllogisms are defined by concrete terms with an inherent semantic meaning5. However,
if the syllogisms are defined as pure rules based on symbols (e.g. on letters), then logic
is rendered uncertain as an instrument of philosophy. The relationship between logic
and philosophy is not of great interest for knowledge representation, but the distinction
between the semantic meaning of the terms and the meaning of the logical construct is.
If the semantic meaning is removed from the logical expression by replacing the terms by
symbols, the matter is removed from it and a formal logic remains [�Luk51].

Gottlob Frege developed, in his famous Begriffsschrift, a language that was oriented to
formal logic, which operates on unambiguous terms and which allows logical consequences
to be derived by syntactical rules. He justified his work on the imperfection of natural
language to express logical thoughts and to avoid errors in reasoning [Bie97]. Some aspects
of this “imperfection” will be the discussed separately in section 1.2 dealing with uncertain
knowledge.

Freges formal language is similar to the language of predicate logic. An important charac-
teristic of predicate logic is the independence of the semantic meaning from the syntactical
statement. Only the interpretation of the logical expression defines the semantic meaning,
regardless of any interpretation given a priori by the labels of the constants and predicates.

As an example, an atomic expression such as “Erlangen is a small city” can be represented
in predicate logic by

is a small city(Erlangen)

where ‘Erlangen’ is a constant that represents an object and ‘is a small city’ is a predicate
that represents a property of an object. Even if the inherent meanings of the terms suggest
a certain meaning of the whole expression, its interpretation is limited only in terms of the
syntactical difference between predicate and constant. Another legitimate interpretation
of the expression might be “Bob has fever” where ‘Erlangen’ is interpreted as ‘Bob’ and
‘is a small city’ as ‘has fever’. To be more independent from the semantic meaning of the
terms, constants and predicates are usually represented by neutral labels, such as P as
predicate and a as constant—the last example would then be represented as:

P (a)

5 �Lukasiewicz cites Plato’s syllogistic proof of the immortality of the soul as an example [�Luk51]

6 CHAPTER 1. INTRODUCTION

A predicate with n arguments and n terms that can represent constants or functions but
not variables is termed ‘atomic sentence’. ‘Sentences’ are made of atomic sentences that are
combined by using expressional logic operators. Predicate logical ‘formulas’ additionally
use variables and qualifiers which may be employed to bind variables [Bib93]. (Other
definitions of predicate logic do not use separate definitions for atomic sentences and
formulas [Rei91].) For example,

∃a : P (a)

could be interpreted as “some cities are small cities”. If all variables of a formula are
bound, the formula is termed ‘closed formula’.

Closed formulas describe objects and represent a truth value, which might be undeter-
mined. As mentioned earlier, an expression P (a) describes the logical relationship between
a constant and a predicate; the semantic meaning of predicate logical expressions is the
result of a process termed interpretation. The interpretation may be formally defined as
a function that maps every constant or variable to an object in the universe of discourse
and every predicate to a truth value ‘true’ or ‘false’. In the last example, the universe
of discourse can be defined by the set of all German cities GC. If the predicate P yields
‘true’ for at least one a ∈ GC, the formula yields ‘true’. For the evaluation of the formula,
the semantic meaning of the labels must be consistent within the expression. That means
that a constant a must have the same meaning, if it appears more than once.

Predicate logic provides, as well as does mathematical logic, the possibility to infer, based
on a given set of formulas, new formulas that may represent explicit knowledge that
was implicitly represented by the pre-defined formulas. The deduction mechanism of a
predicate logic system is defined by a set of axioms and inference rules.

A common inference rule is the ‘modus ponens’ that allows inference from one formula x
to another formula z. If x is valid and another formula y defines the implication of z by
x, then the formula z must also be valid. Formally the modus ponens can be defined as:

mp(x, y) =
{

z if y represents the formula x⇒ z
undefined else

(1.1)

A common notation for such inference rules is the following. The left side shows the formal
definition; on the right side the formula y is replaced by the implication.

x x
y x⇒ z
z z

As an example, ‘intracellular uric-acid crystals’ within the synovia prove gout. The modus
ponens can be used for a patient who suffers from intracellular uric-acid crystals to infer
the conclusion that he suffers from gout:

intracellular uric-acid crystals within synovia(p)
intracellular uric-acid crystals within synovia(p) ⇒ gout(p)
gout(p)

In formal logic, the inference process is based only on the syntactical part of logical ex-
pressions, not on the semantic meaning and is therefore independent of the interpretation.
A common knowledge representation format that uses predicate logic is Prolog6.

6Prolog is a classical logic programming language. A good starting point online is the ‘World Wide
Web Virtual Library’ at http://www.afm.sbu.ac.uk/logic-prog/ that gives information on Prolog as well
as pointers to other logic programming languages.

1.1. KNOWLEDGE REPRESENTATION 7

The most simple way to model knowledge by predicate logic is by a predicate with one
argument. Such a predicate can represent knowledge that can be expressed in natural lan-
guage in adjectival ways. Semantic relationships between constants, formulas or variables
can be defined by predicates that use more than one argument.

A two-valued predicate ‘is instance’ can be used to represent concept classes and members
of concept classes. Concept classes are concepts whose extensions consists of more than
one concept. For example, a hummingbird can be a specialized representation of the
concept class of birds:

is instance(hummingbird, birds)

Analogously to concept classes, events and actions could be defined by a predicate ‘is fired’.
The following sentence yields true if new data is added to the patient record.

is entered(data, patient record)

As shown, predicate logic offers a way to formalize natural language and can be used to
infer conclusions. However, the representation of one fact, which is described in natural
language, using predicate logic, can be defined by more than one expression. There is also
no rule as to whether a certain concept or fact should be represented by a constant, by a
formula, or by a predicate. This decision has to be made with reference to the proposed
use of the knowledge [Bib93].

Classical (predicate) logic formulas yield either ‘true’ or ‘false’ and traditionally use the
‘closed world assumption, which assumes that unknown facts can be rated ‘false’. There-
fore, simple forms of incompleteness such as missing information within the electronic
medical record of a patient cannot be represented. Contradictory knowledge cannot be
modelled by classical logic, as the inference mechanism cannot derive reliable knowledge
from contradictory formulas.

For inference on unknown facts and for the representation of contradictory knowledge,
classical two-valued logic has to be extended. For example, epistemic logic can be used
to differ facts additionally between “it is known to be true” or “may be believed to be
true” [Gel94]. Further, multi-valued logic offers methods to handle vague knowledge by
representing, for instance, truth values by numerical values from 0 to 1.

Excursion: many valued logic

As mentioned earlier, expressions based on many valued logics are not restricted to be
either ‘true’ or ‘false’ but can also represent other truth values. The first many-valued
logics were formulated in the early 1920s by �Lukasiewicz and Post7 [Sin70]. �Lukasiewicz
analyzed modal expressions that represent statements about facts which might be or might
not be. He explained his train of thoughts by the following example:

It may obviously be assumed without any discrepancy that my presence at the
city of Warsaw for a given day in future is possible but not necessary. The
modal expression about a future fact “I will be at Warsaw on December 21th”
can thus be neither ‘true’ nor ‘false’.

7Post formalized his many valued logic independently from �Lukasiewicz. Statements can represent truth
values from a set of n truth values, where n ≥ 2. The logical alternative is defined analogous to equation
1.3. The negation is defined as a ‘cyclic’ negation—the truth value of ¬α is 0 if the truth value of α is n
and it is α + 1 otherwise.

8 CHAPTER 1. INTRODUCTION

If the expression would yield ‘true’, his presence must be, in contradiction to the premise,
necessary. If it would yield ‘false’, his presence must be impossible, which is also in
contradiction to the premise. Therefore, the expression can only be “possible”, but neither
‘true’ nor ‘false’ [�Luk30].

He came to the conclusion that such expressions, formalized as Mα = (“it is possible,
that α”), cannot be represented by two-valued logic. He proposed the use of a third truth
value “neutral” to represent modal statements. Table 1.1 shows three truth tables for the
logical operators ‘and’, ‘or’, and ‘not’. The truth values are represented by 1 for ‘true’,
0 for ‘false’, and 0.5 for ‘not known’. One consequence of �Lukasiewicz’ three-valued logic
was that neither the law of the excluded middle α ∨ ¬α nor the law of non-contradiction
¬(α ∧ ¬α) where a tautology anymore8. For α = 0.5 both expressions yield 0.5.

Table 1.1: �Lukasiewicz first three-valued logical operators truth-tables

and 1 0 0.5 or 1 0 0.5
1 1 0 0.5 1 1 1 1
0 0 0 0 0 1 0 0.5
0.5 0.5 0 0.5 0.5 1 0.5 0.5

not 1 0 0.5
0 1 0.5

�Lukasiewicz remarked that three-valued logic is much closer to human intuition, which
is closely connected to the principles of possibility and necessity, than two valued logics
could ever be. In the actual context it is not relevant whether his proposals were suitable
for defining a modal logic; the interesting fact is that the result was the first explicit
formulation of a three valued-logic.

Later he generalized three-valued logic by a four-valued logic and finally by the first logic
with infinitesimal truth values [Sin70]. Truth values can be defined by real numbers
[0, 1] ∈ IR, where 0 represents false and 1 represents true. The logical operations are
defined as:

¬α := 1− α (1.2)

α ∧ β := min(α, β) (1.3)

α ∨ β := max(α, β) (1.4)

Even if the representation of knowledge by pure logical expressions may be suitable for
mathematicians who have to prove their logical concepts, it might not be the optimal
choice for non-mathematicians who are not used to working with large, abstract formulas.
For easier understanding, predicate logic expressions can be represented, for instance, by
directed acyclic graphs that are also used as representation formalism for semantic nets.

1.1.2 Semantic nets

Semantic nets are historically based on models of human memory in cognition psycholo-
gies. Based on studies it is assumed that concepts which have semantic relationships are
represented by structures that are connected in a suitable way. These connections are

8A tautology is an expression which is true for every α.

1.1. KNOWLEDGE REPRESENTATION 9

termed ‘associative relationships’ and can be described formally by relations with two ar-
guments. Whenever the representation of a certain concept is activated the activation is
transmitted by the associative relationships to related concepts whose level of activation
is therefore increased. Whenever the level exceeds a threshold, the concept is activated
and thus “recognized” [Rei91].

A semantic net can be visualized as a graphical representation of a data structure. The
graph consists of ‘concept nodes’ which are connected by (mostly unidirectional) links. Un-
fortunately, even if the basic concept is very intuitive and simple there is no standardized
definition of the underlying formalism of semantic nets so far [Bib93].

Usually each link is labeled and its label implies the type or semantic meaning of the
relationship. Some types of relationships (‘epistemic primitives’), such as ‘is-a’, ‘causes’,
or ‘is-part’, are defined domain-independently. Links can be transitive, such as the ‘causes’
link:

‘increased level of uric acid’ causes−−−−→ ‘intracellular uric-acid crystals’ causes−−−−→ ‘goat’
⇔ ‘increased level of uric acid’ causes−−−−→ ‘goat’

Analogous to predicate logic, identically labeled concept nodes define the same concepts.
In a semantic net, all concepts must be unique. Nodes can be used to model properties of
a concept by linking another concept node that represents the property and defining the
property class by the link.

‘solid’
form of appearance←−−−−−−−−−−−− ‘Aspirin’

application method−−−−−−−−−−−−→ ‘oral’

To clearly separate concepts and properties in the visual representation, properties are
set in italics. Links that connect a concept with a property are termed ‘property links’,
links that connect two concepts are termed ‘relationship links’. This syntactic difference
is required in humans as well as in machines for a correct interpretation of a semantic net.

Concept classes or events can be modeled analogous to predicate logic. By using the ‘is-a’
relationship it is possible to define concept classes and individual concepts that inherit
properties and relationships of the concept class. Like the ‘causes’ link, the ‘is-a’ link is
transitive.

Basically, semantic nets are suitable for the representation of predicate logical expressions.
However, the representation of the formula by a semantic net would not represent an
equivalent fact but only the formula; in such cases the semantic net is used as meta
representation language for facts being represented by predicate logic.

The representation of incomplete, contradictory, or uncertain knowledge can be achieved
analogous to predicate logic. Additionally it is easy to represent incomplete but restricting
knowledge such as ‘older than’: Two persons of unknown height can have such a relational
semantic relationship that defines the order of their ages without explicitly defining the
particular age of the persons. Contradictory knowledge can be handled by partitioning
a semantic net yielding different representation contexts that individually are not con-
tradictory. The detection of contradictions is limited by the degree of detail and the
completeness of the represented knowledge. To detect a contradiction when a person has
two properties that define his age, one either needs to know that a human can have only
one age or it has to be defined for such individual concepts of a concept class to be unique.

Uncertain knowledge can be represented by probabilities, or for numeric properties by
defining a range of values by two property links ‘upper limit’ and ‘lower limit’. As a

10 CHAPTER 1. INTRODUCTION

semantic net can be used as meta representation of logical expressions, it would be possible
to represent multi-valued logical expressions.

Compared to predicate logic expressions one advantage of semantic nets is the semantic
nearness of semantically related concepts, which is the result of the graphical representa-
tion format. In predicate logic, facts are linked by long series of predicates. Thus, finding
related facts in a large knowledge-base may require a long search. This nearness and the
use of linguistic labels simplify the understanding of semantic nets by human interpreters.
The interpretation can be automated by evaluating properties and following the paths
that are defined by transitive links and semantic relationships.

In summary, semantic nets offer the representation and formalization of complex models,
which is (because of the graphical representation) eligible for human interpretation. The
semantic nearness that concentrates related facts is a concept which is realized even more
distinctively by frame representations.

1.1.3 Frames and inheritance systems

Like the semantic nets, frames are based on models of human ability to memorize that
have been explored by cognition psychology. In contrast to semantic nets, frames are
not directly related to the concept of associative concepts but to conceptual templates
or schemes. A frame is a template for stereotype situations. Stereotypes are driven by
human expectations as to which properties a typical individual of the class should have.

One example for such a situation is the concept of a bird: a typical bird consists of wings,
two legs, and feathers9. One characteristic of templates is their incompleteness. Usually a
frame includes only such properties that are of significant importance for recognizing an
instance of a frame.

For example, the ability to fly seems to be an important property of birds, therefore
sparrows seem to be more typical birds than penguins. This characteristic of the human
way of categorizing the environment was one topic of a study performed by Rosch [Ros73].
As shown later in section 1.2.3.1, this characteristic is a key concept for the representation
of vague knowledge by fuzzy set theory.

The use of schemes as a representation format was first recommended by Minsky [Min75]
and Kuipers [Kui75]. Instead of distributing the knowledge that is related to one concept
on many knowledge nuggets, for example by predicate logic sentences or semantic nets, all
such knowledge is represented in a single structure. This knowledge representation may
therefore be termed ‘object oriented’. A frame that represents a scheme consists of a label
and a set of slots. Each slot is composed of facets which represent fillers containing at
least two of them: the name and the value of the slot.

penguin
height 24cm
feathers black/white
can-fly no

The value of a slot can be another frame; such a slot defines a semantic relationship
between one frame and another, the type of the relationship, such as ‘is-a’ or ‘causes’,

9The biological definition of birds is much more complex, the example is intentionally kept simple for
easy comprehension.

1.1. KNOWLEDGE REPRESENTATION 11

is defined by the name of the slot. As an example, the description of a landscape could
include a description of the fauna that could include descriptions of birds.

The concept of specialization can be realized by one frame inheriting from another one.
The frame of a hummingbird could be the specialization of a general frame ‘bird’ which
could be a specialization of the concept ‘living being’. For the representation of incomplete
knowledge it is possible to define empty slots; uncertain knowledge can be defined by slots
with an associated degree of uncertainty.

In contrast to predicate logic and semantic nets, frames allow a very compactly structured
representation of knowledge. A frame can include all related knowledge in one structure.
The concept of defining frames can be realized by using XML10. XML is a formal language
that is used to define structures of textual documents by tags. Every substructure of a
document is defined by a starting tag and an ending tag. The example of the penguin
can be represented by XML, for example, as follows. Other representations are also
conceivable.

<ENTITY name="penguin">
<ATTRIBUTE label="height">24cm</ATTRIBUTE>
<ATTRIBUTE label="feathers">black/white</ATTRIBUTE>
<ATTRIBUTE label="can-fly">no</ATTRIBUTE>

</ENTITY>

1.1.4 Production rules

In contrast to the representation formats described earlier, production rules can be inter-
preted more as an application-oriented method to model human reasoning that integrates
logic and algorithms. Often, humans describe their knowledge by statements like “if an
accident has happened then provide first aid”. For a given problem, a set of such rules is
evaluated to determine a solution.

A rule consists of an antecedent (synonyms are ‘premise’ or ‘left-hand side’) and a conse-
quent (synonyms are ‘conclusion’ or ‘right hand side’):

if < antecedent > then < consequent >

The consequent is applicable if the antecedent is fulfilled. The action that is implied by
the consequent can be a modification of the facts but also an interaction or message to
the user of the expert system. A system that uses and evaluates a set of production rules
can be compared to an interpreting program, whose data is given by the facts and whose
program statements are given by the production rules. Therefore, such a system is often
used as an inference or problem-solving component of an expert system11.

Production rules that add knowledge to the fact base can be compared to logical implica-
tions. However, a production rule can behave in an entirely different way than a modus
ponens implication. One significant difference between a logical implication and a produc-
tion rule is that the first has a truth value while the later may, but need not necessarily
have one (although, the antecedent can be a logical expression which yields a truth value).

The forward (or data driven) inference process of production rule-based systems can be
structured in three steps:

1. select all rules whose antecedents are fulfilled
10Extensible Markup Language (XML), http://www.w3.org/XML/
11One widely known medical expert system that is based on production rules is MYCIN [BS84].

12 CHAPTER 1. INTRODUCTION

2. select one of these rules and evaluate the consequent

3. repeat until the problem is solved or no more rules are applicable

The first step requires an evaluation of all antecedents of the rule base. If variables are
included in antecedents they have to be resolved first. The second step requires selection of
one rule whose antecedent is fulfilled. If more than one rule is applicable, this conflict has to
be resolved first. Different methods have been defined for resolving conflicts; sometimes
more than one strategy has to be applied to reduce the set of applicable rules. Some
strategies are:

• if the set of rules is ordered, choose the first (or last) rule in the set

• remove all rules from the set, whose antecedent is less specific compared to other
rules; an antecedent a1 is defined to be less specific than a2, if a1 yields ’true’ for
more parameters than a2, for example if a1 depends on the single condition p whether
a2 depends on two conditions p∧ q (in this example, a1 is ‘true’ in one of two cases,
a2 is ‘true’ in one of four cases)

• select the rule that has not been applied for the longest time (or remove those rules
which have recently been applied)

• select an arbitrary rule

• apply all rules in parallel

Another possible inference process is termed backward (or goal directed) inference process.
The inference process is not initiated by facts to rules, but by defining a goal (the result or
solution of the problem) and selecting those rules whose consequent yield it. In the next
step, those rules are selected that yield the antecedent of the last ones as their consequent,
and so on. If more than one rule is applicable, the same strategies for solving conflicts as
for forward reasoning are applicable.

Backward reasoning has one advantage when the facts are not completely defined, as
missing facts can be easily identified and determined, for example by user interactions.
Forward reasoning is usable if more than one goal or no specific goal is defined. Forward
and backward reasoning can be combined, for example, to identify possible goals and to
obtain additional needed facts from the user.

Analogous to predicate logic, semantic nets, and frames, authors of production rule knowl-
edge bases should avoid contradictory knowledge, such as rules that both apply at one
time but imply contradictory consequents (directly or indirectly). Uncertain knowledge
can be represented by certainty factors. As the antecedent is based on a logical expression,
a multi valued logic such as fuzzy logic can be used. Fuzzy control production rules use
fuzzy logical expressions to determine a ‘degree of applicability’ of the consequent (the
concept of fuzzy control will be discussed in greater detail later).

1.1.5 Usability aspects of representation formats in clinical context

Natural language is the main representation format for medical knowledge, often combined
with pictures. However, because of the earlier mentioned problems, it may be suitable to
communicate knowledge from human to human but less suitable to communicate it from
human to machine (or even from machine to machine).

1.2. REPRESENTING UNCERTAIN KNOWLEDGE 13

If natural language is enhanced by meta-information, for example by “highlighting” parts
of the text with XML by clasping parts of the text by XML-tags, it can be made semi-
processable (however based on the meta-information—not on the semantic meaning of the
natural language). For example, such an approach was made to add information to textual
clinical guidelines, which can then be used to display those parts of the guideline to the
clinical staff which are relevant in the current clinical context [HBS+01].

Structured formats, such as predicate logic, semantic nets, and frames, are useful for rep-
resenting declarative information about collections of related concepts. These approaches
share most of their basic properties, allowing one to define concepts, properties, concept
classes, and to inherit concepts. The meanings of semantic relationships are commonly
defined by linguistic labels that, for humans, imply a certain meaning. The difference
between semantic relationships of concepts and properties of concepts is explicitly defined
by the structures in semantic nets and frames.

The choice of one of these formats may influence the comprehensibility for humans—a
physician would hardly appreciate a large knowledge base represented by predicate logic—
thus knowledge should be represented at the right level of abstraction. Rule-based systems
usually provide relatively simple representations of the underlying facts in the domain but
may be more flexible, as they may allow the addition of new knowledge nuggets (rules)
without influencing the behavior of the entire knowledge base. While logic is primarily
used in a declarative way, saying what’s true in the world, rule-based systems (especially
forward chaining systems) are more concerned with procedural knowledge - what to do
when.

For this work, a hybrid knowledge representation format has been chosen that is based on
production rules and includes algorithmic procedures known as ‘Arden Syntax for Medical
Logic Systems’ (a detailed introduction follows in section 1.4) that will be extended in ways
to represent uncertain knowledge, or more exactly vague knowledge, later.

1.2 Representing uncertain knowledge

As stated earlier, the representation of uncertain knowledge may be handled by different
representation formats in different ways. This section gives an introduction of different
types of uncertainty and a short historical overview of their representation with the main
focus on vague knowledge.

1.2.1 Sources of uncertainty

Four sources and subtypes of the concept that is generally known as uncertainty can
be identified, located on two levels of abstraction, the numerical and the symbolic one
(figure 1.2).

For the representation and definition of concepts, a representation format may use symbols
(for instance labels) instead of defining concepts strictly according to their physical prop-
erties. One example is the concept ‘red’ that may be defined on a range of wavelengths of
light, but is commonly used as a vague concept.

Starting from the numerical level, uncertainty can be caused by the (im)precision of mea-
surements, for example as a result of technical limits of the analyzers. Every observation
can then only be made by a limited degree of precision.

14 CHAPTER 1. INTRODUCTION

Probability

numerical

level

level

symbolic

Sources of
Uncertainty

Incompleteness

Imprecision

Vagueness

Figure 1.2: Sources of uncertainty

On the symbolic level, one type of uncertainty is the incompleteness of knowledge. Either
facts in the knowledge base are unknown or facts of the real world, which are used by
knowledge nuggets in the knowledge base, are unknown. Multi-valued logic supports un-
known facts by introducing special truth values for ‘unknown’. Therefore incompleteness
can be fully supported by any representation formalism that at least includes a three-
valued logic.

Another type of uncertainty on the symbolic level is based on probability. A classical
method to handle such uncertain events or facts is to use the Bayesian theorem. It
can be used to compute the most probable diagnosis under the presence of one or more
symptoms. The probability is computed on the basis of the a-priori absolute probability
of the diagnosis (that can be defined empirically) and on the conditional probabilities of
the presence of the symptoms when the diagnosis is present (which can also be defined
empirically). The a-priori probabilities should be based on a reliable empirical method,
which includes a sufficient number of reliable patient cases, or on estimations given by
medical experts.

During the knowledge acquisition for the MYCIN expert system the authors realized that
the experts did not use conditional probabilities but could estimate a degree to which a
diagnosis is more likely to be present if a certain symptom is present (or not present)
[SB75]. These parameters were termed ‘measure of belief’ and ‘measure of disbelief’ of
believing in a hypothesis in dependence to a given evidence.

However, the result of a statement about the probability of a certain fact implies that
the fact is either present or not present. In contrast, the last type of incompleteness
known as vagueness or linguistic fuzziness is based on the principle of conceptual schemes
or templates, as previously mentioned in section 1.1.3, and can be modeled by fuzzy set
theory, yielding a gradual degree of the presence of facts.

1.2.2 Historical roots of the formalization of vagueness in natural lan-
guage

The vagueness of natural language is not exclusively associated with fuzzy logic. The
fuzziness of concept categories was an aspect of philosophical, linguistic, and psychological
theories.

1.2. REPRESENTING UNCERTAIN KNOWLEDGE 15

1.2.2.1 Paradoxes in the early philosophy

Problems that arise when logical expressions use predicates that are based on vague con-
cepts have been discussed in philosophy since ancient times. The sorites paradox12 form
a class of paradoxical arguments (also known as little-by-little arguments) that arise as
result of vague definitions within the predicates used by the arguments. An example for
such a paradox is the bald man paradox:

It is clear that when a man with full hair looses a single hair, he will still have
full hair. Yet, he will get bald if this is repeated often enough.

It appears absurd that a single hair should influence the decision as to whether a man
may be termed bald or not. However, based on the assumption that a single hair cannot
influence the decision and by using the modus ponens, it is possible to prove that a bald
man has full hair and vice versa:

Obviously a man who has no hair on his head is bald. If a person with n hairs
is bald, a person with n + 1 hairs is also bald. These rules imply that a man
with 1 hair is bald. Thus, a man with 2 hairs is bald as well, and so on.

One could specify a number of hairs that defines a threshold between ‘bald’ and ‘non
bald’. However, intuitively such a threshold would be unacceptable, in which a single
hair could decide whether a man is bald or not. A predicate like ‘is bald’ appears to be
tolerant to sufficiently small changes in the set of facts—in this case the number of hairs
(compare [Wri75]). The change of facts that is caused by the step “If a person with n hairs
is bald, a person with n+1 hairs is also bald” seems to be too small to make any difference
to the application of the predicate, whereas significant changes—the accumulation of many
small changes—seems to exceed the tolerance.

On the other hand, it must be possible to basically distinguish between the two concepts
‘bald’ and ‘not bald’. One solution to this paradox might be the conclusion that two-valued
logic cannot be applied on expressions that include vaguely defined concepts. As soritical
paradoxes are the result of the inherent vagueness of a language, an ideal language with
precise terms could eliminate them13.

1.2.2.2 The perfect language

In an attempt to realize Leibnitz’ ideas of a perfect and ideal language, Frege defined
a formal notation for regimenting reasoning by a logic-oriented language that operates
on unambiguous symbols (terms). The idea of a perfect language has been propagated
in the early 20th century mainly by Russell and Wittgenstein. Russell pointed out that
vagueness is not the result of things being, but only existent on the symbolic level. Thus,
talking about vagueness and precision is only relevant when talking about representation
formats.

“Vagueness and precision alike are characteristics which can only belong to a
representation, of which language is an example. [. . .] Apart from representa-
tion, whether cognitive or mechanical, there can be no such thing as vagueness
or precision; things are what they are, and there is an end of it.” [Rus23]

12The name ‘sorites’ is derived from the ancient Greek word for ‘heap’, since the first version of this
paradox involved a heap of wheat.

13Compare http://plato.stanford.edu/entries/sorites-paradox

16 CHAPTER 1. INTRODUCTION

Russell tried to prove that all terms are vague, starting with the definition of the color
‘red’. Certain shades of the color ‘red’ may cause problems when humans have to decide
whether they still can be termed red. The cause of this uncertainty is not ignorance on the
part of the interpreter regarding the meaning of the term ‘red’, but in the basic vagueness
of the concept14. On account of this vagueness the principle of the excluded middle cannot
be valid for such problems. The law of the excluded middle is true when precise symbols
are employed, but not true when symbols are vague [Rus23].

Russell defines ‘vagueness’ as opposed to ‘accuracy’; both terms describe the relationship
of a representation to the object being represented. An accurate representation has a
one-to-one relation to the objects; a term of a language must have only one meaning and
two different words cannot have the same meaning. In contrast, a vague representation
has a one-to-many relation; vagueness is therefore a matter of degree. As mentioned in the
introduction of predicate logic, to express a concept by natural or formalized language,
usually more than one right representation is valid; they have a one-to-many relation to
the objects they represent.

However, Russell stated that it would be a mistake to assume that vague knowledge is
invalid knowledge. In contrast, he claimed that a vague speculation might be much more
likely to be true than a precise one.

1.2.3 Vague categories and their elements

An empirical approach to the definition of vagueness is to use ‘consistency profiles’. The
vagueness of a symbol is measured by the relation of yes/no answers of persons who had to
apply the symbol s on an object o taken from a series of objects O. Each symbol s provides
a consistency function c, that defines for each object x the quotient of the occurrence of
positive and negative answers c(o, s) = hp(o,s)

hn(o,s)
15. The graphical representation of this

function is termed the consistency profile for a given symbol with regard to a series of
objects and was intended to be used in descriptive form.

1.2.3.1 Cognition psychology

Studies on the categorization of objects by terms were already mentioned in the context of
frame representations. Rosch and her staff examined the cognitive efficiency of structures
by categories (horizontal) and order and grades of membership within the single categories
(vertical). One result was that most categories could not be exactly defined with crisp
borders [Ros73,Ros78].

For one experiment the subjects had to specify, on a numeric scale from 1 to 7, how far
given objects meet their “idea or picture” of the given category. This value defined the
‘degree of prototypicality’ of the object in respect to the category. The categories are sep-
arated into three classes: basic level categories, superordinate categories and subordinate
categories. Objects that belong to the same basic level categories share many properties.
One example is the category ‘table’. Elements of superordinate categories, for example

14Another definition of vagueness by Peirce is based on a non-well-defined usage of language by a speaker:
“By intrinsically uncertain we mean not uncertain in consequence of any ignorance of the interpreter, but
because the speaker’s habits of language were indeterminate. . . ” (C.S. Peirce. Vagueness. Dictionary of
philosophy and psychology, 2, 1902, cited from [Bie97])

15The function is not defined for hn(o, s) = 0. However, as one presumption was that every language (or
symbol) is vague, the denominator should never be zero, even if in practice (and as shown later in fuzzy
sets) some objects may absolutely define a category and therefore be the reference for an object series.

1.2. REPRESENTING UNCERTAIN KNOWLEDGE 17

‘furniture’, share comparatively few properties, while objects of subordinate categories
share properties among different categories, for example ‘dining table’ and ‘kitchen table’.

Other experiments touched the relationship of prototypicality to family resemblance. Fam-
ily resemblances define a concept not by essential common characteristics that apply for
every member of the concept, but by overlapping similarities16. Elements of a category
that are most prototypical have the highest family resemblance to all elements of the same
category and the lowest family resemblance to elements of other categories [RM75]. Thus,
a prototype may be termed the “best representative” of a category.

Categories without sharp boundaries provide, on a comparable degree of linguistic ab-
straction, a higher content of information compared to categories without fuzzily defined
boundaries, as elements in such a fuzzily defined category can be classified vertically. The
use of such categories is less problematic as they do not require the definition of sharp
boundaries whose exact limits are not reasonable because of lack of knowledge or facts.
As the membership is not restricted to a ‘yes’ or ‘no’ decision, the resulting models are
often more robust [Bie97].

Figure 1.3 illustrates the issue of robustness by a model of a therapy recommendation.
The recommendation is based on a set of symptoms which are each based on measured or
observed data. Such data could be, for example, the measured blood oxygen level. If it
is within a pre-defined range, it represents the symptom “decreased blood oxygen level”.
On a higher level of abstraction, this symptom could be called “hypoxemia” and could
necessitate an increase of FiO2.

measured and observed data

ab
st

ra
ct

io
n

an
d

ag
gr

eg
at

io
n therapeutic recommendation

symptom symptom symptom

pathophysiological state

Figure 1.3: Process of abstraction

If the symptom “decreased blood oxygen level” was defined by a crisp set, and the mea-
sured blood oxygen level was closely outside the borderlines that define the set, the entire
model no longer applies. Whereas, if data to symbol conversion were defined with fuzzy
borders, the observation might still represent the symptom “decreased blood oxygen level”
to a reduced degree. Therefore the symptom could still be called “hypoxemia” and the
entire model would still apply, even if the degree of, say, “application”, might be slightly
decreased compared to the first example. The overall fuzzy definition can therefore be
more robust in terms of small changes of the underlying facts than the crisp one.

If the last example was not only based on one observation but on many facts that all include
vagueness, and the vagueness is increased by aggregating less abstract concepts to more
abstract concepts, the robustness of the entire model would be progressively reduced when
using sharp definitions for vague concepts. Zadeh defined the ‘principle of incompatibility’

16Wittgenstein, who molded this term, unfortunately did not exactly define the meaning of ‘similarities’
in this context.

18 CHAPTER 1. INTRODUCTION

in which he describes the relationship between the complexity of a system, precision, and
significance:

“. . . as the complexity increases, our ability to make precise and yet significant
statements about its behavior diminishes until a threshold is reached beyond
which precision and significance (or relevance) become almost mutually exclu-
sive characteristics.” [Zad73]

1.3 Fuzziness theories

Cantors definition of sets presumes that the question as to whether an object belongs
to a set or not can be answered non-ambiguously by ‘yes’ or ‘no’. For the definition of
mathematical concepts this crisp definition of sets that have sharp and precise boundaries
works well. In practice, precise thresholds and criteria are often required and can at
least be defined as long as measurable parameters exist. On the other hand, a definition
of linguistically defined concepts by exact thresholds is often arbitrary and subsequently
leads to problems as mentioned in the last section. The benefit of getting a computable
definition by precise thresholds frequently involves a loss of information in borderline cases.

An alternative formalization of such linguistic classes may be the use of a characteristic
function that defines a gradual degree of membership of objects to a class instead of a
bivalent one. This concept of fuzzy sets is an extension of classical set theory and was
introduced by Lotfi Zadeh in 1965 [Zad65] (all formal definitions are made in section 1.3.1).
He called this gradual type of characteristic function membership function; in this work
compatibility function is used17. Zadeh’s concept of fuzzy sets were his starting point to
evaluate concepts for representing linguistic concepts and using them for reasoning. So
far evolution has reached the concept of ‘computing with words’.

Approaches to represent fuzzy semantics quantitatively by fuzzy subsets (for instance
characterizing concepts such as “middle aged”), led to the definition of the concept of
a linguistic variable, whose values are labels of fuzzy sets [Zad71, Zad73]. The values of
a linguistic variable can be modified by ‘linguistic hedges’ such as ‘very’, ‘slightly’, or
‘much’ and combined by using the connectives ‘and’, ‘or’, and ‘not’. For example, if a
linguistic variable “height” represents the height of a person, possible values could be
‘small’, ‘average’, or ‘tall’ which could be modified to ‘very small’, ‘small or average’, or
‘slightly tall’.

Zadeh states that the linguistic approach, even if it abandons numbers, does not break with
the mathematical way of dealing with problems. Instead it links quantitative classifications
with qualitative ones by using words whenever precise numerical characterizations are not
appropriate to increase the precision of the meaning of words [Zad76b].

The linguistic approach also affects the representation of truth values. In contrast to
bivalent systems where truth can be represented only by two values, ‘true’ and ‘false’,
the linguistic approach can be used to adopt multi-valued logics by labels such as ‘true’,
‘very true’, ‘not quite true’, etc. [Zad89]. Today, in common language the term ‘fuzzy
logic’ which originally stands for a multi-valued logic based on fuzzy subsets representing
truth values, stands for all concepts related to fuzziness theories. In addition to the
representation of truth values by fuzzy sets, the degree of compatibility of an element

17The term is chosen as the function will mainly define by which degree a measured value is compatible
with the definition of a medical concept.

1.3. FUZZINESS THEORIES 19

of the universe of discourse to the fuzzy set can be interpreted as a truth value of the
predicate [Zad90]. For example, the degree of compatibility of Bob to the class “persons
who have glaucoma” can be interpreted and equated to the truth value of the predicate
has glaucoma(Bob) (except that in classic predicate logic this formula would yield either
‘true’ or ‘false’ while the degree of compatibility can additionally represent any value in
between).

Simple relations between linguistic variables can be represented by fuzzy conditional state-
ments, more complex relations by fuzzy algorithms including linguistic statements or fuzzy
if-then rules. Fuzzy logic and fuzzy if-then rules are used by ‘fuzzy control’ that became
a popular concept of fuzziness theories in industrial applications. Fuzzy control uses lin-
guistic variables as input and output values of fuzzy production rules. The first important
application of fuzzy control rules was achieved in 1973 by Mamdani and Assilian, who
defined a system to control a small steam engine. The remarkable result was not only that
the control system, which has been set up within a weekend, worked, but how fast and easy
a rather complex system could be described by a set of rather simple if-then rules. Fuzzy
control was the break through of “fuzzy logic” in industry, especially in Japan where in
the late 80s many consumer products started to use these technologies.

Finally, as mentioned before, the current methodology that is propagated by Zadeh is
termed computing with words and is a consequent derivative of the linguistic approach
[Zad96, Zad99]. However, this work only employs certain some rather basic concepts of
all these theories and methods, such as fuzzy sets (especially the degree of compatibility),
fuzzy logic, and linguistic variables which will be defined in the next section.

1.3.1 Fuzzy set theory

A crisp set is defined as a collection of objects known as elements. In the following crisp
sets are termed sets and represented by capitals, such as A, whereas lower-case letters such
as a represent single elements. The statement “a is element of A” is notated symbolically
by a ∈ A.

A set can be defined in many ways. In the first method the elements of the set are explicitly
listed:

A = {2, 3, 4, 5} (1.5)

Another method is to define a criterion that the elements of the set have to fulfill:

A = {x|x ≥ 2 and x ≤ 5}, x ∈ X (1.6)

If the elements x0, . . . , xn in equation 1.6 are elements of a universe of discourse X, another
way to define the set is to use a characteristic function:

µA(x) =
{

1 x = 2, 3, 4, 5
0 otherwise

(1.7)

For every x ∈ X, the characteristic function defines the membership xi ∈ A by returning
1 for ‘membership’ and 0 for ‘no membership’. Additionally, the characteristic function
can be represented graphically as shown in example 1.

20 CHAPTER 1. INTRODUCTION

Example 1: (crisp set)

The set A of all real numbers x ∈ IR which are greater than 18 is defined by the
following characteristic function (figure 1.4 shows a plot of the characteristic
function).

µA(x) =
{

1 x ≥ 18
0 otherwise

ω

µ(ω)

0.0

0.5

1.0

5 10 15 20 25

Figure 1.4: Characteristic function of the set of real numbers which are greater than 18

Example 1 could be used to define the set of “adults” as a set of individuals who are at
least 18 years old. Whereas such a crisp definition might be required for legal reasons, it
is not suitable for use in other cases, such as for the administration of drugs, or to term
a patient on the verge of turning eighteen a child. To avoid such significant changes of
categorization, the set could be defined as a ‘fuzzy set’.

Definition 3 (fuzzy set, degree of compatibility, label):

A fuzzy set
A = {(x, µA(x)), x ∈ X}

is characterized by a compatibility function

µA : X → [0, 1]

that defines for each x ∈ X the degree of compatibility or, in other words,
the degree of membership of x in fuzzy set A as a real number in the interval
[0, 1]. A is the label of the fuzzy set. The degree of compatibility of 1 is defined
as ‘full compatibility’ or ‘full membership’, whereas the degree of 0 is defined
as ‘no compatibility’ or ‘no membership’.

Neither the universe of discourse nor the compatibility function is limited to formal defi-
nition. The function may be defined by an equation, a graph, or by the explicit definition
of the degree of compatibility of each element. One way to formally define a fuzzy set on
X = IR with parameterizable functions is to use s-, z-, or π-type functions as originally
defined by Zadeh [Zad76a].

s(x, α, m) =




0 ; x ≤ α
2(x−α

m−α)2 ; α < x ≤ α+m
2

1− 2(x−m
m−α)2 ; x < α+m

2 ≤ m

1 ; otherwise

(1.8)

z(x, β, m) = 1− s(x, β, m) (1.9)

1.3. FUZZINESS THEORIES 21

s/z(x, α, m1, m2, β) =
{

s(x, α, m1) ; x ≤ m1

z(x, β, m2) ; otherwise
(1.10)

The π-type function can be viewed as a special case of a combined s/z function with
m1 = m2. The terms s- and z-type describe the form of the function graph (compare
figure 1.5).

The first parameter α of an s-function defines the lower threshold up to which the function
returns 0 and therefore defines the range of values which are absolutely incompatible with
the term defined by the fuzzy set. The second parameter m defines the upper threshold
from which the function returns, 1 defining the range of values which are fully compat-
ible with the term. Zadeh defined the ordinate of the inflection point as an additional
parameter, which is simply replaced here by the expression α+m

2 .

ωω ω

µ(ω)µ(ω) µ(ω)

0.00.0 0.0

0.50.5 0.5

1.01.0 1.0

α α m1m2 ββm m

Figure 1.5: Parameterizable s-/z-type compatibility function

These types of functions provide very smooth transitions around the thresholds and seem
intuitively to be very suitable for defining the fuzzy set. However, practical experience
showed that such accuracy is not relevant; simpler linear functions as shown in figure 1.6
are sufficient.

The linear equivalent to the s-type function is defined as:

µright(x, x0, ∆x0) =




0 x ≤ x0 −∆x0
x−(x0−∆x0)

∆x0
(x0 −∆x0) < x < x0

1 x0 ≤ x

(1.11)

Analogously, the linear z-type function is defined as:

µleft(x, x0, ∆x0) =




1 x ≤ x0

1− x−x0
∆x0

x0 < x < x0 + ∆x0

0 x ≥ x0 + ∆x0

(1.12)

Finally the combined function is defined as:

µtrapez(x, x0, x1, ∆x0, ∆x1) =




0 (x ≤ x0 −∆x0) ∨ (x ≥ x1 + ∆x1)
x−(x0−∆x0)

∆x0
(x0 −∆x1) < x < x0

1 x0 ≤ x ≤ x1

1− x−x1
∆x1

x1 < x < (x1 + ∆x1)
(1.13)

The absolute parameters α and β have been replaced by the relative interval ∆x0 and
∆x1. The following examples show the general use of the linear compatibility functions.

22 CHAPTER 1. INTRODUCTION

ωω ω

µ(ω)µ(ω) µ(ω)

0.00.0 0.0

0.50.5 0.5

1.01.0 1.0

x0x0 x0

∆x0∆x0∆x0

x1

∆x1

Figure 1.6: Parameterizable linear compatibility function

Example 2: (fuzzy sets: age definition)

For classifying children and adults, two fuzzy sets “child” and “adult” are
defined on the universe of discourse X = IR+. The fuzzy set child is defined
by a linear s-function with x0 = 17 and ∆x0 = 2 and the fuzzy set adult by a
linear z-function with x0 = 19 and ∆x0 = 2 (figure 1.7).

ω[years]

µ(ω)

0.0

0.5

1.0

5 10 15 20

child adult

Figure 1.7: Fuzzy sets for “child” and “adult”

The definition of the compatibility function mainly depends on the experts who define the
fuzzy set and on the context in which the fuzzy set has to be used. The definition used by
the last examples might be suitable for computations where the dose of a drug depends on
whether the patient is a child or an adult. It might be less suitable for deciding whether
a person is ‘adult’ enough to drive a car or to watch a movie. Therefore fuzzy sets often
are subjective and context-sensitive.

The use of parameterizable linear functions as compatibility functions has two advantages.
First, the effort to define the functions is reduced to the definition of single parameters that
define the interval from ‘full compatibility’ to ‘no compatibility’. Further, the mathematics
for operations between such fuzzy sets can be implemented efficiently.

However, not every concept can be modeled by using these three functions, for example
if more than one range of values has to be defined as fully compatible. For this task
piecewise linear functions could be used. However, for extending Arden Syntax, functions
1.11 to 1.13 are quite sufficient.

Basic operations on fuzzy sets

As in crisp set theory, a single fuzzy set can be inverted by a complement operator and
two or more fuzzy sets can be combined by intersection or union operations. In contrast to
the corresponding operations on crisp sets these operations on fuzzy sets are not unique.
Each operation is represented by a class of operators, the choice of a particular operator
has to be determined by the purpose for which it is used.

The most common operators for fuzzy union, intersection, and complement are defined as

(A ∪B)(x) = max[A(x), B(x)] (1.14)

(A ∩B)(x) = min[A(x), B(x)] (1.15)

A(x) = 1−A(x) (1.16)

1.3. FUZZINESS THEORIES 23

Figure 1.8 illustrates the use of these definitions. The left side shows the fuzzy sets that
are used to compute the union, the intersection, and the complement or complement, the
right side shows the result (indicated by the bold line).

ω ω

ω ω

ωω

µ(ω)

µ(ω)µ(ω)

µ(ω)

µ(ω)µ(ω)

0.0 0.0

0.0 0.0

0.00.0

0.5 0.5

0.5 0.5

0.50.5

1.0 1.0

1.0 1.0

1.01.0

union

intersection

complement

Figure 1.8: Fuzzy union, intersection, and complement by using equations 1.14 to 1.16

1.3.2 Linguistic variables

The main function of mathematical variables is to represent unknown values which usually
are elements of a predefined and restricted set by a symbolic label. In addition to such
numerical variables, Zadeh defined linguistic variables whose values are linguistic terms
that are semantically related labels of fuzzy sets [Zad73,Zad87].

Definition 4 (Linguistic variable):

Mathematically, a linguistic variable can be defined by a quintuple

VL = {X, T, Ω, G, B} (1.17)

where X is the name of the variable, T a set of terms representing the values
of X, Ω the universe of discourse, G a set of syntactical rules which generate
T , and finally B a set of semantic rules that define the linguistic discretization
of Ω.

Linguistic variables are can be used to adequately represent expressions in natural language
rules, such as “if intraocular pressure is increased then. . . ”. The concept and use of a such
a linguistic variable is illustrated by the next example.

Example 3: (Linguistic variable: intraocular pressure)

The normal eye maintains an internal pressure from 12 to 22 mm of mer-
cury. A linguistic variable ‘intraocular pressure’ can be defined as X = IOP,
T = {normal, increased}, and Ω = [0, 70]18. The linguistic discretization B is

18In this example, G is not defined separately.

24 CHAPTER 1. INTRODUCTION

defined by two fuzzy sets, which define the relationship of t ∈ T to Ω (figure
1.9). A fuzzy set is characterized by a compatibility function which defines
the degree of compatibility of ω ∈ Ω to a term: a degree of 0.0 indicates no
compatibility whereas a degree of 1.0 indicates full compatibility.

ω[mmHg]

µ(ω)

0.0

0.5

1.0

19 20 21 22 23

normal increased

IOP
ω = 21.5

µn(21.5) = 0.28

µi(21.5) = 0.72

Figure 1.9: Linguistic variable ‘IOP’ (intraocular pressure)

Based on an numerical input value of ω = 21.5 the linguistic variable ‘IOP’
has the value ‘normal’ by a degree of 0.28 and the value ‘increased’ by a degree
of 0.72.

Usually a classic variable represents at each moment only one value (that however might
be indeterminate). As shown in the last example where the variable represents ‘normal’
and ‘increased’ simultaneously, a linguistic variable can represent one or more values that
even might be contradictory, each by a certain degree.

If the variable represents different characteristics of a diagnosis, such as ‘normal’, ‘patho-
logical’, ‘suspicious’, or ‘glaucomatous’, its single values can be easily communicated in
textual form. For example, such a message could be: “The patients eye status is rated
‘glaucomatous’ by a degree of 0.8” or “The patients eye status is highly rated ‘glaucoma-
tous’.” Such variables usually represent the results of fuzzy control systems.

1.3.3 Fuzzy control

Fuzzy control systems are based on a set of fuzzy production rules that use linguistic
variables as input and output values (figure 1.10). The input values are used as antecedents
by the single production rules and define the degree of validity of the rules’ conclusion.
The output is an aggregation of the single results of all applicable rules.

Before a numeric value can be used as input for a production rule it has to be represented
by a linguistic variable. Usually, for every term t ∈ T the degree of compatibility of the
given numerical value is determined by applying the value to the corresponding fuzzy set.
This step is termed the fuzzification of the input value.

As the next step the input variable is used by the set of production rules as condition on
the left side. Every rule consists of an antecedent (the condition) and a consequent (the
conclusion) and is formed as follows:

if <condition> then <conclusion>.

The conditional expression on the left side can be composed of one or more comparisons
of a linguistic variable and a linguistic value.

<input_variable> has <value>

1.3. FUZZINESS THEORIES 25

ω

ω

ω

µ(ω)

µ(ω)

µ(ω)

var1

varn

varout

...

term1
1 term1

2 term1
3

termn
1 termn

2

termo
1 termo

2

termo
3

termo
4 termo

5

Set of production rulesLinguistic input variables Linguistic output variables

if then
var1 . . . varn varout

term1
2 termn

1 termo
4

term1
3 termn

1 termo
5

.

..
.
..

.

..
term1

1 termn
2 termo

2

Figure 1.10: Structure of fuzzy control rule sets

where value is one of the linguistic values T . If the condition consists of more than one
comparison they can be combined using logical operators like ‘and’, ‘or’, and ‘not’.

The conclusion usually consists of one or more assignments of a value to a linguistic
variable such as

set <variable> to <value>.

The degree of truth of the condition determines the degree of validity of the conclusion.
If the conditional expression is fulfilled only partially then the output variable is also set
to the value partially. More than one value—even conflicting ones—can be assigned to
the same output variable. If the same value is assigned to the variable more than once,
the maximum degree of validity is chosen. For example, figure 1.11 shows two linguistic
variables: the left one is used as input variable, the right one as output variable. This
variable represents four linguistic values ‘none’, ‘low’, ‘medium’, and ‘high’, based on a
numerical universe of discourse. The variable has been set to ‘low’ by a degree of 0.4 and
to ‘medium’ by a degree of 0.6 and can be interpreted as “more medium than low”.

ω[mg/dl] ω[IU]

µ(ω) µ(ω)

0.00.0

0.50.5

1.0 1.0

0200 300 400 500

slightly inc. increased sign. inc. strongly inc.

4 8 12 16

none low medium high

Figure 1.11: Reaction of production rules for a given numerical input value

As mentioned earlier, linguistic variables that represent concepts that can be directly
communicated to a person may be included, for example, in a textual message. Whereas,
when such a variable represents a numerical parameter as shown in figure 1.11 and a
concrete value ω ∈ Ω is needed, for instance for dosing a medication, the linguistic variable
must additionally be defuzzified.

Definition 5 (defuzzification):

The value of linguistic variables that are defined on a numerical universe of
discourse can be converted from its linguistic representation to a numerical one

26 CHAPTER 1. INTRODUCTION

by the defuzzification of the linguistic variable. As a variety of methods to
defuzzify linguistic variables are available, some common methods are defined
exemplarily.

The Mean-of-Maximum (MoM) method selects the value y where where
µ(y) yields the maximal compatibility. If the local maximum is a plateau the
mean is usually computed by equation 1.18 [Bie97].

y0 :=
ymin + ymax

2
; ymin = min M, ymax = max M (1.18)

The Center-of-Maxima (CoM) method computes a weighted average that is
computed of the average of all local maxima.

y0 =
∑

i xiµ(xi)∑
i µ(xi)

; x : average of plateaus (1.19)

The Center-of-Gravity (CoG) methods computes a the center of gravity of
the area that is defined by the union of all fuzzy sets.

y =

∫
y∈Y yµ(x1, . . . xn)(y)dy∫
y∈Y µ(x1, . . . xn)(y)dy

(1.20)

Applying the MoM method on a compatibility function with separated maxima, the result
might be a value whose degree of compatibility is less than the computed maximum.
Further, this method may yield a rather discontinuous result as the result is only driven
by the fuzzy set of the linguistic value with the highest degree of assignment. Therefore,
at the borderlines where this main influencing value changes, the result could change
significantly. Thus this method is not recommended for practical use [NKK96]. Fur the
fuzzy extensions to Arden Syntax, the CoM method will be mainly used.

1.3.4 Fuzzy algorithms

Fuzzy algorithms are used in everyday life, such as for cooking recipes, instructions for find-
ing a path, or instructions for treating a disease. In contrast to conventional algorithms,
fuzzy algorithms contain fuzzy statements, or, as stated by Zadeh, “the class of nontrivial
problems for which one can find precise algorithmic solutions is quite limited” [Zad68].
He illustrates the concept of fuzzy algorithms by fuzzy statements such as

• “Set y approximately equal to 10 if x is approximately equal to 5”

• “If x is large, increase y by several units”

• “Move several steps forward”.

Assigning a precise meaning to a fuzzy instruction can be done by using compatibility
functions. For example, the expression “several steps” can be defined by a discrete fuzzy
set19 A:

A = {0/0, 1/0, 2/0, 3/0, 4/0.8, 5/1, 6/1, 7/1, 8/0.7, 9, 0, 10/0, . . . }
19The notation used by this example defines the set by pairs of the elements and their corresponding

degree of compatibility.

1.3. FUZZINESS THEORIES 27

Five, six, or seven steps are defined to be absolutely compatible with the expression
“several steps”. Less than four steps and more than eight steps may definitely not be
termed “several steps”; four or eight steps are borderline cases.

However, the ambiguity of the execution of the fuzzy instruction is not resolved by the
precise definition of a fuzzy instruction. How many steps would a human take, if this fuzzy
set would represent his interpretation of “several steps”20?

Two methods to determine a concrete instruction are defined in [Zad68]. The ‘probabilistic
execution’ defines for each possible outcome of a fuzzy instruction a probability that is
proportional to the degree of compatibility. In the example, 4 steps would be chosen with
probability 0.8

4.5 , whereas 8 steps would be chosen with probability 0.7
4.5 , and 5, 6, and 7 steps

with probability 1
4.5 . The other outcomes could not be chosen. Optionally, the method

could be extended by defining a threshold that removes all outcomes whose degree of
compatibility is less than the threshold.

The ‘nondeterministic execution with threshold’ selects any of the outcomes whose actual
degree of compatibility is greater than a defined threshold. As a variant of this method,
the element with the highest degree if chosen.

Obviously, in cases of a fuzzy choice of possibilities to act, finally one decision has to be
made. On the other hand a decision between two possible decisions that differ in their
degree of compatibility only marginally implies similar problems as the decision why an
element should be included into a crisp set and another element that is closely outside the
definitions should not; a small difference of the input factors could result in a significant
change of the output.

An alternative method to represent typical “if . . . then . . . else” instructions is defined
by the compositional rule of inference which can be used with fuzzy sets that represent
numerical values [Zad73]. This rule considers both alternatives in cases where usually a
binary decision, such as described earlier, is required. Zadeh illustrates the concept with
an example

if small then large else not very large

with very small as input value. The result of the instruction is composed both by the
concept large and not very large, each of it gaining as much influence on the result as
defined by condition and input value.

The compositional rule of inference is defined by

y = x ◦R (1.21)

where R is a fuzzy relation that represents the fuzzy instruction, x is a fuzzy subset
that represents the conditional instance, and y the fuzzy subset which is induced by the
composition ◦. The result is therefore a fuzzy set and not one concrete value. The use
of this method is not explained in detail, as only the concept of taking two alternatives
into consideration that both have a certain influence on the result is of importance for the
extensions of Arden Syntax. More detailed information about the compositional rule of
inference can be found in [Zad73].

Common constructs of algorithms that are widely used in classical programming languages
are yes/no criteria such as “If x is small then stop else goto 7”. Zadeh assumes that an

20In his paper Zadeh excluded any external factors that could influence the decision, such as the expen-
diture of the energy involved, etc.

28 CHAPTER 1. INTRODUCTION

individual would chose the alternative with the higher degree of truth and defines this rule
as the ‘rule of the preponderant alternative’ [Zad73]. However, this approach is similar
to the ‘execution with threshold’ that implies a crisp yes/no decision. In contrast, the
compositional rule of inference implies that the execution has to be carried out in parallel,
as both alternatives gain influence according to the degree of truth of the definition.
This problem is one to be resolved when extending the Arden Syntax and defining fuzzy
conditional statements.

Other formal definitions of fuzzy algorithms are based on fuzzy Turing machines [Zad68,
San70].

1.4 The Arden Syntax for Medical Logic Systems

The Arden Syntax is a hybrid knowledge representation format that consists of a frame-
like document structure and a procedural programming language. It was born in 1989
during a workshop at the Columbia University’s Arden Homestead Conference Center.
The workshop was driven by the idea of creating a knowledge representation format that
would facilitate the definition of knowledge bases and the utilization of decision support
systems. At the time the group identified the rather difficult creation of knowledge bases
as one possible reason for the poor acceptance of decision-support systems [Hri94a]. Most
decision-support systems remained small to medium in size and were bound to the insti-
tution as the launch of new systems usually required to define the knowledge base from
the scratch [Gao93]. It is assumed that no individual institution would develop knowledge
bases that cover all aspects of medicine and it would therefore be desirable to be able
to share parts of knowledge bases among institutions [GSA+92]. Advances in medical
research imply changes in the medical knowledge base that has to be maintained over
time. Therefore, the main aims for the Arden Syntax were reusability, shareability, and
understandability.

It was proposed that these aims would be achieved by standardizing the syntax, by taking
care of data base queries, and by using a representation format that should be easy to
understand even for non-programmers. The syntax has been largely derived from the
formats used by HELP (LDS Hospital) and CARE systems (Regenstrief Medical Record
System) [Gao93, Pry94]. The concept of Arden Syntax allows one to define ‘rule-like’
knowledge bases where an action is the (conditional) result of an event. A knowledge base
represented by Arden Syntax is modular and consists of individual rules known as Medical
Logic Modules (MLMs).

Usually, an Arden Syntax-based system operates as follows: The system (“rules engine”)
listens to the occurring events and chooses those MLMs out of its knowledge base, which
define the occurred event as an evocation condition. These MLMs are evoked as defined
by the condition, either instantly or (if defined) delayed, and execute the included data
base queries. Then the decision logic that is represented by a rather simple programming
language concludes either ‘true’ or ‘false’. In the case of a false conclusion the process
stops here. Otherwise the rules engine executes an action that is separately defined by the
MLM.

Most elements of the decision logic use keywords that are close to natural language and
can be used to create easily readable expressions such as ‘if age is less than 18 then’ or
‘5 minutes after the time of event 1’. A three-valued logic provides the representation
of incompleteness as a basic form of uncertainty. However, to represent uncertainty in
terms of vaguely defined concepts, the syntax needs to be extended by concepts of fuzzy

1.4. THE ARDEN SYNTAX FOR MEDICAL LOGIC SYSTEMS 29

set theory and fuzzy logic. This extension of the Arden Syntax is the main topic of this
thesis and is described in the next chapter. Before going into greater detail, the rationale
of Arden Syntax and some information about its most recent developments are given in
the last part of this section.

A tutorial for writing MLMs of Arden Syntax version 1 has been published in 1994 and
can be used to gain an impression of the syntax [Hri94b]. The specification of actual
versions 2 and 2.1, which will be published at the end of 2003, can be obtained from HL7;
an updated implementation guide is on its way [Hls02a]. As further introductions to the
Arden Syntax [HLP+94,HPW95] are recommended.

1.4.1 General aspects

An important aspect of the Arden Syntax is the proposed target audience and the users
of MLMs. As mentioned in the introduction, many knowledge representation formats can
be used to solve a given problem. The choice of a specific format is mainly driven by the
question what has to be solved and who has to define the knowledge.

Classically an expert who has the domain specific knowledge is supported by a knowledge
engineer who is skilled in the knowledge representation format and who helps the expert
to formalize its knowledge. However, it is important to motivate the users of the system
to contribute to the knowledge base and to keep it up to date, to create a “sense of
ownership” for the system [GM99]. Tools for maintenance have to meet their needs and
the representation format is one of them. Therefore an easily readable, understandable,
and writable syntax could help the experts to work on it independently and to improve
its use as well as enhance the interest of the clinical staff in clinical decision support.

For this reason especially the algorithmic part of the Arden Syntax is kept simple, to help
those who are not familiar with programming languages or logic representation formats to
understand the modules. Its simplicity is one of its major differences compared to other
representation formats that are more complex and might even be more powerful in terms
of creating complex algorithms. Using the Arden Syntax in different projects seemed to
validate this requirement [JMB94].

1.4.1.1 Modularity

Arden Syntax was intended to be a format for knowledge bases that can be represented
as a set of discrete modules. An MLM is structured like a frame by three categories
whose entries are slots that are composed of a name and a value. Each MLM should
include sufficient knowledge for making one specific decision, such as generating an alarm
message or suggesting diagnostic hypotheses. The independence of the MLMs implies that
is should be generally possible to understand and use every knowledge module without
having references to other MLMs [Gao93]. Further, MLMs can be easily added or removed
without affecting the overall performance of the system or other MLMs21.

An MLM contains in its ‘maintenance’ and ‘library’ category knowledge about maintain-
ability, such as author and status. It explains the represented knowledge by free text or
provides links to further sources of knowledge, such as literature. This information should
help to increase the user’ acceptance and the credibility of the rules [JMB94]. They may be

21Except, of course, if an MLM makes use of the possibility to reference and call other MLMs directly.
However, it is generally possible to remove and add parts of the knowledge base without affecting other
parts of it.

30 CHAPTER 1. INTRODUCTION

used to explain the decisions made by the module. The last category ‘knowledge’ includes
the decision logic and data base queries.

1.4.1.2 Programming language

The programming elements used for implementing the decision logic provide statements
for program flow control (such as assignments, if-then statements, and loops), operators
for building expressions that combine and manipulate data (such as logical, comparative,
or algorithmic operators), and variables of different data types.

One important issue is the handling of variables. In contrast to many programming
languages, Arden Syntax variables are not bound to data types, but can dynamically
represent data of different types during the execution of an MLM. One advantage of this
dynamic data typing is, for example, that one variable can be used to process data which
might be stored in the data base by different data types [HCJC92]. For example, a query
for serum potassium may return either a numerical value or a code like “hemolyzed”.
However, it is up to the author of an MLM to ensure that the logic will handle every
type of data that can be represented by the variable during runtime correctly, as many
operators are defined only to work on a limited subset of the Arden Syntax data types. In
the last example textual codes may have to be handled in a different way than numerical
ones. Owing to the missing type declaration of variables, the use of wrong data types as
arguments of operators cannot be detected during the compilation of the MLMs22.

Even if the syntax is kept simple, Gao et al. attempted to enhance the readability by
creating editors to support the authoring of MLMs. The presented editors were in the
range from computer-based forms with pick-lists and default values for some input fields to
Microsoft Word-based solutions. The conclusion was that a good knowledge editor can help
physicians to turn their knowledge into MLMs, as not only the syntactical representation
of knowledge is a challenge for the deployment of knowledge bases, but also the ability to
turn one’s knowledge and practice into algorithms [GSA+92]. Another form-based editor
has been created using Protégé-II23 [BE97].

1.4.1.3 Separation from data mapping and logic

Data base queries have been separated from the decision logic by two separate slots in the
‘knowledge’ category to increase the shareability of MLMs. In theory, whenever knowledge
has to be transferred from one institution to another, only the data base mappings would
have be modified instead of rewriting the entire rule. However, studies showed that the
shareability of MLMs is still problematic due to different data base formats.

One limitation is the availability of the data that are used by the rules and must therefore
be present in both data bases. However, once the data is available, further problems may
arise due to the absence of a standardized medical vocabulary or encoding system. This
lack of standardization may be manifested in major differences between data base models
(conceptual organization of the data) that are used by the institutions and therefore in
differences of the data types that are returned by data base queries. Even if the variables

22Even if some structures of the Arden Syntax are similar to common programming languages, MLMs
usually have to be compiled (translated) into a format that can be executed within the decision support
system. In recent projects MLMs were converted into program code, such as C++, into a ‘pseudo-code’
that is used by an interpreter, or into a knowledge representation format that is used by an expert system
shell.

23http://protege.stanford.edu/index.html

1.4. THE ARDEN SYNTAX FOR MEDICAL LOGIC SYSTEMS 31

are not bound to a pre-defined data type and can therefore represent the data, the logic
may have to be altered as mentioned earlier. Further problems may be caused by different
measurement units for numerical data base entries [HPW95].

Columbia Presbyterian Medical Center to the LDS Hospital [PH94]. On account of differ-
ences of the data structures in the data bases, the receiving institution had to redefine not
only the data to symbol conversion by updating the data base queries, but even elements
of the decision logic. Overall, half of the modifications affected the logic of the MLMs.
These problems might not only arise when knowledge is to be shared, but also affect the
maintenance of the knowledge base when data base structures within one institution do
change [JHHC98].

This problem of non-standardized data base queries is actually known as curly braces
problem and is one topic in the responsible working groups of HL7. Some implementations
of Arden Syntax-based systems made use of different terminology systems [ASG+94,Lud94,
Dup94]. However, a standardized component of the Arden Syntax that can be used to
define data base queries is planned not before version 3 of the Arden Syntax in the near
future.

1.4.2 Arden in use

Since the early 90s, Arden Syntax is being used at several institutions that published
papers about the evolution of their systems.

Since the early 70s the LDS Hospital uses a decision support system known as HELP.
As Arden was derived from the underlying syntax, the LDS Hospital partially adapted
their system rather early to the new Arden Syntax. 3M corporation implemented an Arden
Syntax compiler that translated Arden Syntax MLMs into an intermediate language, which
then was compiled into the HELP system. The system was used for data driven alerts
and remainders, such as monitoring laboratory values, and for clinical protocols. Messages
were delivered either by terminal messages, as printed reports, or by a nursing electronic
beeper system [Pry94]. Today the Arden Syntax is not the main representation format
used in the LDS Hospital.

The Columbia Presbyterian Medical Center implemented an Arden Syntax-based system
that has been linked to the institution’s patient data base and was able to route and
display alert messages. The system was based on a compiler which translated Arden
Syntax MLMs to pseudo-codes that were then executed (or, more exactly, interpreted by
an interpreter). One conclusion of the implementation was that data base queries take
up most of the execution time. Thus the time loss due to the interpretation of the p-
codes has not been significant [HCJC92]. Another conclusion was to rearrange the order
of operations during the process of compilation: If decisions depend on certain data and
the result of the decision would imply reading more data, only data that are relevant for
the decision should be queried from the data base rather than reading the complete data
first. However, this partial annihilation of the separation of data and logic is made during
runtime and the MLMs still define the queries separately from the decision logic.

An Arden Syntax-based expert shell at the University of Giessen translated MLMs into
PL-SQL code that was directly used within an Oracle data base [Taf99]. Additionally,
information required for the storage and evocation of MLMs are stored in a set of data base
tables. Special focus was given to the detection of “unjustified” messages that, for example,
may be the result of the continuous execution of rules whereas their resulting messages are

32 CHAPTER 1. INTRODUCTION

read asynchronously. The system identified and removed outdated or duplicated messages
automatically [TAW+99].

At the University of Linköping MLMs have been translated into the C++ programming
language and used within an expert system for tasks in the laboratory, such as real-time
validation of laboratory test results [Gao93, Joh97]. A different approach was adopted in
the Massachusetts General Hospital: a commercial expert shell was used and Arden Syntax
MLMs were manually converted into the needed format [JMB94]. They used the Arden
Syntax as formalized and uniformed format for a textual library from which knowledge
can be extracted and converted if needed.

1.4.3 Current state

The Arden Syntax became an ASTM standard in 1992 [Ast92] and is maintained by the
Health Level Seven, Inc. since 1998 [Hls99]. Within HL7 the Arden Syntax Special Interest
Group (Arden Syntax SIG) that is hosted by the Clinical Decision Support Technical
Committee (CDS TC) is responsible for further development of Arden Syntax. The group
meets regularly three times a year and has recently defined the latest version 2.1 of Arden,
which includes minor changes in the syntax, such as some new operators and a first
approach for an XML representation of Arden Syntax MLMs.

At the end of 2002 current discussions regarding Arden Syntax mainly concern the handling
of complex data types and solving the curly braces problem. In the last year the former
HL7 Arden Syntax TC was renamed the Clinical Decision Support TC; since this time it
is hosting two ‘Special Interest Groups’ (SIGs), the Arden Syntax SIG and the Clinical
Guidelines SIG. The latter consists of members of the old Arden Syntax TC and new
members who contribute their knowledge and experience about guideline formats to a
common guideline standard.

The main topics of the Arden Syntax SIG in the last two years, and therefore changes to
the Arden Syntax Version 2.0, were the following:

Structured reports (v2.1):
Before Motorola quit their efforts in HL7 they proposed a structured write statement that
could be used for a unified specification of messages. The structure was based on an XML
document definition and included, in addition to the message, one or more receivers, some
timeouts for the delivery and acknowledgement of the message, and information about
follow-up actions. This extension has been included in the latest Arden Version 2.1 which
is currently opened for balloting.

New operators (v2.1):
A slight extension of the syntax has been proposed by McKesson; it provides some new
operators but does not change basic principles of Arden Syntax. These extensions mainly
improved the handling of string data [Hls02b]24.

Representation of uncertain knowledge (v2.x/v3):
The ability to represent uncertain knowledge was desired even before the current work
on Fuzzy Arden was started. In an early harmonization state between Arden Syntax and

24The need for an operator to extract substrings has also been identified when implementing the Arden
Syntax system at the University of Giessen [Taf99].

1.4. THE ARDEN SYNTAX FOR MEDICAL LOGIC SYSTEMS 33

the guideline format GLIF25, some new operators for Arden Syntax were proposed; one
of them was termed ‘is unknown’. At that point the committee decided not to include it
as it “would introduce a four-state logic and would significantly alter the behavior of the
current Arden logical operators” [Hls00a].

Obviously the extensions proposed in the following chapter also alter the behavior of
the syntax; the changes are not restricted to the logical operators. However, as shown
later, the “fuzzy concepts” can be perfectly integrated without violating any principles
of the Arden Syntax. All proposals included in this thesis have been presented to the
Arden Syntax SIG at the past four HL7 working group meetings and were discussed with
great interest (compare [Hls01a] to [Hls02a]). Currently the SIG expects an extended
specification document that incorporates the extension of discussion as a working item for
final decisions.

Harmonization with Guidelines SIG/Curly braces problem (v3):
Another topic within HL7 is harmonization with the future guideline format of HL7. The
Clinical Guidelines SIG was created indirectly at a workshop in March 2000 in Boston by
the InterMed26 group. This workshop on clinical guidelines had the purpose of bringing
together people from universities, industry, and other healthcare-related organizations who
are interested in a unified and standardized electronic guidelines format. In the course
of 2000 the GLIF group decided to join HL7 and it was decided to create a guideline-
related SIG which was attended by several members of other electronic guideline groups
as well [Hls00a,Hls00b].

The first meeting of the new GLIF SIG was held in January 2001. Owing to the attendance
and contributions of members of other guideline groups, such as Prodigy27 or GEM28, the
SIG has been renamed the Clinical Guidelines SIG [Hls01f]. As the SIG decided not
just to adopt GLIF but to aggregate the concepts and ideas of all participating groups
into a single standard, the work has been separated into individual topics, such as an
XML architecture for electronic guideline documents, a flowchart format for the graphical
representation, and terminological aspects.

Initially the Arden Syntax was intended to be used as an expression language for the rep-
resentation of conditional statements and data base queries. However, soon it emphasized
that one main feature of the Arden Syntax—the simplicity—avoided the use of a guideline
format as it would have to be able to operate on complex data structures (objects). The
group presented alternative approaches such as the expression language GEL (Guideline
expression language) or an object-oriented query language [Hls01e]. These approaches led
to discussions within the TC and the Arden Syntax SIG as, on the one hand a common
expression language within HL7 was desired but, on the other hand the Arden Syntax
group did not want to significantly alter its syntax. The main concerns about such sig-
nificant changes came from the industrial attendees as they feared that a very important
feature—the simplicity—of Arden Syntax would be lost.

The work on the expression language continued independent of the Arden Syntax. As a
result the expression language GELLO defines an object-oriented format for queries (which
can be compared to the curly braces constructs in Arden Syntax) and for referencing
results of queries (thus for defining conditional statements) [Hls01d]. Comparisons of

25Guideline Interchange Format, http://www.glif.org
26http://www-camis.stanford.edu/projects/intermed-web/
27http://www.prodigy.nhs.uk
28http://ycmi.med.yale.edu/GEM/

34 CHAPTER 1. INTRODUCTION

queries and conditional statements implemented by GELLO and implemented by Arden
Syntax showed that such an extended syntax is required for processing data objects. As
a consensus it was decided, that GELLO should be able to use HL7 data types (and
associated methods) but should not include control structures such as if-then or assign
statements [Hls02c].

So far GELLO is under development as a separate product in addition to the Arden Syntax.
The most recent discussions showed that the Arden Syntax SIG and the involved vendors
mainly have concerns regarding the use of object-oriented methods in Arden. However,
GELLO can be used to define database queries in the curly braces.

In parallel the Arden Syntax will be extended stepwise to be able to handle objects.
Initially the data types are to be extended by a dot notation that allows one to define
objects as “record structures”. A variable could then represent more than one value, each
identified by a label and accessible by concatenating the label of the variable and the
label of the “sub-value” by a dot. For example, the diastolic value of a blood pressure
observation could be accessed by ‘BPObservation.diastolic’. With such an extension,
Arden Syntax could operate on complex objects on the one hand, but would not lose its
simplicity on the other [Hls02d].

Chapter 2

Fuzzy Arden Syntax

Since the Arden Syntax does not provide elements to represent vague knowledge, it has
been cautiously extended by concepts of fuzzy set theory, fuzzy logic, and fuzzy control.
Basically fuzziness might have to be formalized in those algorithmic parts of an Arden
Syntax rule that include vaguely defined concepts, which are represented by expressions
that use comparison operators. For example, the concept ‘fever’ can be formalized by using
an ‘is within’ comparison operator that has fuzzified upper and lower limits for defining the
valid range of temperature values. Generally, this type of representing fuzziness concerns
most expressions that include selection criteria, such as data base queries or conditional
expressions. Furthermore, the resulting ‘fuzziness’ (the degree by which the numerical
value matches a fuzzified condition) must be processed and taken into account during the
execution of the algorithm.

The first section provides a brief introduction of the elements of the Arden Syntax of
version 2 that are needed to define MLMs. The description is brief; more detailed infor-
mation is available in the specification document from HL7 [Hls99] or in the publications
mentioned in the introduction.

The second section describes the conceptual models for the extension of the Arden Syntax,
which are then applied in section 2.3 to elements of the syntax. The final section defines
further extensions that can be used to realize linguistic variables and fuzzy-control-like
knowledge bases by Arden Syntax.

2.1 Elements of the Arden Syntax

A knowledge base that is represented by Arden Syntax is composed of a set of indepen-
dent rules known as Medical Logic Modules (MLMs). Each MLM should include sufficient
knowledge for making one specific decision, such as generating an alarm message or pro-
viding diagnostic theories.

Usually an MLM is stored in an ASCII text file. Figure 2.1 shows one sample MLM that
is published in the Arden Syntax specification.

Each MLM is structured by three categories: maintenance, library, and knowledge. Each
category includes entries (slots), which are composed of a name and a corresponding value,
either as free text, coded by keywords, or structured by statements and operators. The
maintenance category contains slots with general information, such as title, source, version,
and status. The library category contains slots with explanatory information, key words,
and citations of other sources of information.

35

36 CHAPTER 2. FUZZY ARDEN SYNTAX

maintenance:

title: Check for penicillin allergy;;

mlmname: pen_allergy;;

arden: ASTM-E1460-1995;;

version: 1.00;;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.;;

specialist: ;;

date: 1991-03-18;;

validation: testing;;

library:

purpose:

When a penicillin is prescribed, check for an allergy.

(This MLM demonstrates checking for contraindications.);;

explanation:

This MLM is evoked when a penicillin medication is ordered.

An alert is generated because the patient has an allergy

to penicillin recorded.;;

keywords: penicillin; allergy;;

citations: ;;

knowledge:

type: data-driven;;

data:

/* an order for a penicillin evokes this MLM */

penicillin_order := event {medication_order where

class = penicillin};

/* find allergies */

penicillin_allergy := read last {allergy where

agent_class = penicillin};

;;

evoke:

penicillin_order;;

logic:

if exist(penicillin_allergy)then

conclude true;

endif;

;;

action:

write "Caution, the patient has the following allergy to"

|| " penicillin documented: " || penicillin_allergy;;

urgency: 50;;

end:

Figure 2.1: Sample MLM: contraindication alert (taken from [Hls99])

The knowledge category provides all information that is needed for an expert system to
evaluate and execute the rule. “Fuzzy extensions” concern most of the knowledge slots:

Data slot: The data slot maps institution-specific data to local Arden Syntax variables by
defining data base queries, events, message destinations, and references to subrules
(other MLMs) or external programs.

All institution-specific definitions are formalized within curly braces and are not
part of the standard specification. To minimize non-standardized parts of an MLM,
conditional parts of data base queries, such as temporal restrictions, can (and should)
be defined “outside” the curly braces by using Arden Syntax operators.

Logic slot: This slot defines the decision criterion of the rule that returns either ‘true’
or ‘false’. The decision is usually based on the data stored in variables that have
been defined in the data slot. Arden Syntax provides a simple and easily readable

2.1. ELEMENTS OF THE ARDEN SYNTAX 37

programming language that can be used to alter and evaluate this data; therefore
the representation of the decision criterion is basically algorithmic in nature.

Action slot: The action slot is executed if the decision logic arrived at a positive conclu-
sion. Usually an MLM generates a message that is sent to a destination defined in
the data slot. However, the action is not limited to sending messages; it can also be
used to return data to an MLM that called the current one or to call other MLMs.
However, the option for user interactions is not part of the syntax but might be
implemented as a special destination for a message29.

Evoke slot: The evoke slot defines when the MLM has to be executed. The execution of
an MLM can be triggered by an event that has to be defined in the data slot (the
event slot uses the local variable that was used in the data slot). Optionally the
execution can be started delayed and/or in a cyclic manner after the event occurred.
The slot is empty if the MLM is intended to be called directly, for instance by another
MLM.

2.1.1 Data types

The basic function of an MLM—decision-making—is based on query, manipulation, and
evaluation of data. The Arden Syntax comprises different data types for representing
numerical values, character strings, truth values, temporal values, and lists. Unknown
data or data that result from invalid operations are represented by ‘null’.

Boolean Valid values of this data type are ‘true’ and ‘false’. However, logical operators
are defined by a trivalent logic which is explained in the next section.

Number Arden Syntax has one data type for numerical data and does not distinguish
between integer and real numbers; all arithmetic is done internally in floating point
numbers. Number constants can be defined by one or more digits (0 to 9) and an
optional decimal point, and may end with an exponent, represented by an E or e.
For example:

2.4E-12 or 42

Time dates are represented in an extended ISO 8601-1988 format. Dates are defined as
yyyy-mm-dd, times by yyyy-mm-ddThh:mm:ss with ‘T’ or ‘t’ as separator30. Option-
ally, fractional seconds and a time zone can be defined. For example:

2002-07-07T13:43:00

Arden Syntax provides keywords that define time constants. ‘Now’ defines the time
of execution of an Arden Syntax rule, ‘eventtime’ defines the date of the event that
evoked the rule, and ‘triggertime’, the time of a delayed rule evocation.

Duration Intervals in time without an anchor to any particular point in time can be
represented by duration values. For example:

29Message destinations are institution specific and can therefore be defined arbitrarily within curly
braces.

30Except for very few elements, Arden Syntax is not case sensitive.

38 CHAPTER 2. FUZZY ARDEN SYNTAX

3 years or 0.1 months

The print output of durations is specific to the duration that has to be printed,
for example the duration 26 hours could be printed as ‘1 day, 2 hours’. Internally
all durations are represented either as months or seconds. Conversions from one
representation to another are regulated by the specification.

String This data type represents streams of characters of variable length. Strings are
delimited by double quotes. For example:

”HL7” or ”Arden Syntax”

Term Terms are constants strings for special use, such as for defining MLM names in
MLM references. Terms are delimited by single quotes. For example:

’pen allergy’

Lists Lists are ordered sets of data values of any data type except lists itself and may be
heterogeneous. For example:

(42, 1975-07-05, ”HL7”, null)

Each data value is associated with an additional attribute ‘primary time’. The primary
time defines the most relevant time stamp for the data value, for example the time of an
examination. Each data value that is the result of a data query should have a primary
time. If data are defined in the logic slot, for example by assigning constants to variables,
or if data are manipulated by operators that lose the primary time, their primary time
may be ‘null’.

Arden Syntax does not provide data types to handle complex data such as objects. In
object-oriented programming languages, data collections can be “hidden” behind object
definitions, which provide one data type for the entire collection. For example, an object-
oriented data type for blood pressure observation could include information about the
systolic and diastolic pressure, the observation method, and a reference to a patient.
Further, objects provide methods for accessing and manipulation data in them.

2.1.2 Logic

The Boolean truth values can be either ‘true’ or ‘false’. A trivalent logic is used for
logical operations. The classical operators ‘and’, ‘or’, and ‘not’ are defined to operate
on the Boolean truth values and additionally on ‘null’. Table 2.1 shows the truth tables
for Arden Syntax logic operators. Arguments that are not Boolean values are handled as
‘null’.

According to the specification, the third value ‘null’ expresses uncertainty. The uncertainty
may arise from missing data in the database, errors during the execution of operators (e.g.,
division by 0), or due to an explicit assignment of ‘null’. This type of uncertainty rather
signifies incompleteness than vagueness (compare section 1.2). Therefore, the interpreta-
tion of ‘null’ as uncertainty is not inconsistent with fuzzy logical extensions presented in
this work.

2.1. ELEMENTS OF THE ARDEN SYNTAX 39

Table 2.1: Arden Syntax logical operators truth-tables

and true false null or true false null
true true false null true true true true
false false false false false true false null
null null false null null true null null

not true false other
false true null

2.1.3 Programming language

Arden Syntax provides a simple programming language to define the algorithms in the
structured slots (data, logic, and action), which is similar to Pascal or Basic. Variables are
used to store and manage data, operators are used to build expressions that manipulate
data, and statements are used to define the algorithm by combining expressions and to
control its execution.

2.1.3.1 Variables

A variable is a temporary place holder for a data value and is defined by an identifier
(variable name). In contrast to other programming languages, such as Pascal, C, or Java,
variables need not be explicitly defined before they can be used. Further, a variable is not
bound to an explicit data type. During the execution of the algorithm it may represent
data of different data types.

As Arden Syntax only provides primitive data types and as lists cannot be nested, objects
with more than one value that are the result of data base queries have to be split into
their single data values and stored in different variables. For example, a blood pressure
observation object that includes the diastolic and systolic pressure has to be separated
into two individual variables.

2.1.3.2 Operators

Operators are used to manipulate data. Arden Syntax classifies unary, binary, and ternary
operators, which accept one, two, or three arguments. Most operators are defined to work
on a subset of the data types. Their formal definitions declare the valid types of valid
arguments. As variables cannot be defined explicitly, expressions that contain variables
cannot be verified by syntactical rules in means of data types31.

The Arden Syntax specification classifies the operators additionally by their functionality:

List operators for the creation, manipulation, and for sorting lists.

Logical operators define ‘and’, ‘or’, and ‘not’ for logical operations.

Simple comparison operators provide the comparisons ‘greater than’, ‘less
than’, ‘equal’ and combinations of them. The common symbolic operator

31With more effort it might be possible to verify parts of the algorithms where constants are assigned
to variables but all operations that depend on data from the data base cannot be verified.

40 CHAPTER 2. FUZZY ARDEN SYNTAX

names, such as >, <, and =, can be synonymously used in addition to
the linguistic operator names.

Is comparison operators provide additional comparisons for interval com-
parisons. Further, this class of operators includes data type comparisons.

Occur comparison operators can be used for primary time comparisons.

String operators provide string manipulation and formatting.

Arithmetic operators provide arithmetical operations for numbers, times,
and durations.

Temporal operators can be used to compute relative dates (for example, ‘2
hours after time of event1’ or ‘2 days ago’).

Duration operators provide methods for the creation of durations and the
extraction of single information of date, such as the day or month of a
given date.

(Query) aggregation operators are mostly defined for manipulating or ag-
gregating lists32.

(Query) transformation operators also work on lists and provide the se-
lection of elements based on different orders or the computation of rela-
tions between the elements, such as the difference from element to ele-
ment.

Numeric function operators provide mathematical operations that are de-
fined on numbers and one additional operator that generates numbers
from strings or Boolean data. This ‘as number’ operator generates the
numerical value 1 from a ‘true’ and the numerical value 0 from a ‘false’.

Time function operator returns the primary time of a data value.

2.1.3.3 Expressions and Statements

Strictly speaking, expressions consist of operators, constants, and variables, and are used
within statements. Statements define the algorithm of the decision logic. More gener-
ally, the term ‘expression’ also refers to the entire expression made of statements and
expressions.

The most basic statement is the ‘assignment’ of data to a variable. The data itself is
represented by an expression. For assignments, both the symbolic representation ‘:=’
and the linguistic representation ‘let . . . be’ are valid. The following example shows three
assignments of a string value to a variable ‘error msg’.

Example 4: (Use of assignment statements)

error_msg := "no valid value for ’weight’";
let error_msg be "no valid value for ’weight’";
error_msg := "no valid value for " || error_cause;

The last assignment additionally includes a string concatenation operator that appends
the value of the variable ‘error cause’ to the string constant.

32The selection of a single element out of a list is defined also in this class of operators, even if it would
be reasonable to classify it as a list operator.

2.1. ELEMENTS OF THE ARDEN SYNTAX 41

An ‘if-then’ statement defines one or two code blocks whose individual execution depends
on a conditional expression. If the expression yields ‘true’ the first code block is executed.
If it yields ‘false’ (or more exactly, if it yields any other value) and a second code block is
defined by the keyword ‘else’, the second one is executed. Finally, the program flow of the
algorithm continues with the statement that follows on the ‘if-then’ statement. ‘If-then’
statements can be nested, as shown in the next example.

Example 5: (Nested if-then statements)

0: msg :="Body Mass Index = " || bmi;
1: if bmi >= 27.8 and gender = "M" then
2: msg := msg || " which is above the 85th percentile for men.";
3: elseif bmi >= 27.3 and gender = "F" then
4: msg := msg || " which is above the 85th percentile for women.";
5: endif;

First, the constant part of the message is prepared (line 0). If the body mass
index (BMI) of the current patient, which is represented by the variable ‘bmi’,
is at least 27.8 and the gender of the patient is male (line 1), then the message
is extended by a warning that the patient’s BMI exceeds the recommended
range (line 2). If the patient’s BMI is either below the first condition or if the
patient is not male, the second condition is evaluated (line 3). If it yields ‘true’,
then the message is extended analogously (line 4). Lines 3 and 4 represent an
‘if-then’ statement that is nested within another one.

Loops can be realized by the ‘while. . . do’ loop and ‘for. . . in. . . do’ loop statements. The
first one cyclically executes a code block as as long the condition yields ‘true’. The second
one uses a variable and a list as arguments and executes a code block as many times as
the list has elements. In every iteration the variable represents the corresponding element
of the list.

Example 6: (Loop statements)

0: num := 1;
1: msg := "The following patients are eligible for the study: ";
2: while num <= (count patients) do
3: a_patient := patients[num];
4: is_eligible := call test_study with a_patient;
5: if (is_eligible is equal true) then
6: msg := msg || " a_patient, ";
7: endif;
8: num:= num + 1 ;
9: enddo;
10:
11: for a_patient in patients do
12: is_eligible := call test_study with a_patient;
13: if (is_eligible is equal true) then
14: msg := msg || " a_patient, ";
15: endif;
16: enddo;

In this example both loops are used to browse through a list of patient ids or
patient names. The first one uses a separate counter variable (line 0) to access
the list element (line 3). The counter is increased in every iteration of the
‘while loop’ (line 8) until it exceeds the number of elements of the list (line 2).

42 CHAPTER 2. FUZZY ARDEN SYNTAX

The second one automatically accesses the list element by using the ‘for loop’
statement (line 11).

Both algorithms call another MLM to prove whether the patient is eligible for
a study and append its identifier to a textual message (lines 4 to 7 and lines
12 to 15).

2.2 Conceptual models of the extensions

One reason for the fuzziness of vague concepts is the process of abstraction from real-
world observations and measurements to terms. Often, terms and single characteristics of
abstract concepts are defined within a given range of real world data, as shown exemplarily
by the concept of ‘fever’.

Example 7: (Definition of fever)

The concept “temperature of human body” (‘body temperature’) may be de-
fined in the range of 15 to 45 degrees Celsius. In means of fuzzy set theory,
this range can be termed the universe of discourse.

The characteristic “fever” can be defined for a sub-range of the universe of
discourse, say from 37.0◦C to 38.0◦C.

An action that depends on the decision whether a patient’s temperature could be termed
fever or not can be represented by an Arden Syntax comparison as shown in the following
example.

Example 8: (Definition of fever with Arden Syntax)

Presuming that the variable ‘temperature’ represents a valid numerical value,
a decision based on the condition whether the patient has fever can be imple-
mented as follows:

if temperature is within 37 to 38 then . . . endif;

If the temperature represents any value from 37 to 38 (including the upper and
lower limit), the code indicated by the three dots is executed.

This definition of a conditional expression leads to known problems concerning crisp defi-
nitions, as pointed out in the introduction. Values which are infinitesimally smaller than
the lower threshold or infinitesimally greater than the upper threshold would unintuitively
result in a completely different decision than values that are equal to the thresholds. Con-
ditional expressions similar to this example are widely used in any parts of an MLM that
include selection criteria, for example when selecting data from a database or for branch
conditions in the logic slot (such as ‘if-then’ or ‘while’ statements).

Therefore, to consider the fuzziness of medical concepts, those elements of the Arden
Syntax have to be extended that are used to express conditional expressions as shown
in the last example. Ostensibly, the extensions will mainly affect comparison operators,
such as ‘is greater than’ or ‘is within . . . to’. Further, the extensions will affect the logical
data type as well as operators or conditional program statements, such as the ‘if-then’
statement, which have to be able to interpret fuzzy truth values that are returned by
fuzzily defined expressions.

2.2. CONCEPTUAL MODELS OF THE EXTENSIONS 43

2.2.1 Fuzzy operators: fuzzy sets and fuzzy truth values as model for
fuzzy comparisons

A traditional Arden Syntax comparison operator compares data values and returns a crisp
truth value. Arden Syntax provides comparison operators for

• simple comparisons, such as ‘is greater’, ‘is less’, or ‘is equal’

• more complex comparisons, such as the comparison to a range of values

• comparisons of string values, such as the ‘matches pattern’ operator

The concept of fuzzy sets is applied to fuzzified comparison operators that compare nu-
merical values and return fuzzy truth values instead of crisp ones. (The comparison of
string values cannot be fuzzified by applying fuzzy sets, as the universe of discourse is not
numerical and the comparison of strings may include aspects like the semantic meaning
of strings or even their pronouncement.)

Definition 6 (fuzzy behaving operator, fuzzified by):

A fuzzy behaving operator or fuzzy operator is a comparison operator
that uses numerical arguments which can represent a crisp threshold or a fuzzily
defined threshold.

If an argument has to represent a fuzzily defined threshold, the gradual transi-
tion from ‘true’ to ‘false’ is defined by an additional parameter specified by the
keyword fuzzified by.

The result of a fuzzy operator is always a fuzzy truth value that is equal to the
degree of compatibility of the argument to the condition.

As the result of a fuzzy operator could be a truth value that is neither ‘true’ nor ‘false’
but a value in between, the former Boolean truth data type is extended to support truth
values and is termed fuzzy truth value. First, the range of Boolean {false, true} has been
interpreted as {0, 1} where 0 corresponds to ‘false’ and 1 to ‘true’. Then, the two truth
values were extended to a range of truth values [0, 1] ∈ IR to specify a degree of truth.

Definition 7 (fuzzy truth value):

A fuzzy truth value represents gradual truth values from ‘true’ to ‘false’,
represented by a number:

[0, 1] ∈ IR

The former values ‘false’ and ‘true’ now correspond to the boundary values 0.0
and 1.0 and can be used synonymously. Just like any variable, a variable that
represents a truth value can additionally take on the value ‘null’ whereby logical
operations have now to be defined on

[0, 1] ∈ IR ∪ {null}

Fuzzy truth constants are notated by a number with a leading F , such as F1.0,
F0.4, or F0.0, where ‘true’ can be used synonymously with F1.0 and ‘false’
with F0.0.

44 CHAPTER 2. FUZZY ARDEN SYNTAX

By using these extensions the condition whether a patient has fever as defined in example
8 can be represented as shown in the following.

Example 9: (Fuzzy definition of fever)

A fuzzy definition of the characteristic “fever” may be defined by fuzzifying
each threshold by 0.5 and can be implemented by Fuzzy Arden as:

if temperature is within 37 fuzzified by 0.5 to 38 fuzzified by 0.5 then . . . endif;

Compared to the former crisp definition, this conditional expression extends
the range of valid arguments on both sides33. The dimension of the extension
is controlled by the ‘fuzzified by’ keywords (compare figure 2.2).

ω[◦C]

µ(ω)

0.0

0.5

1.0

36 37 38 39

is within to
fuzzyfied byfuzzyfied by

α β

Figure 2.2: Membership function of a fuzzified ‘is within to’ operator

The body temperature value α = 37.9 has a degree of compatibility of 0.8 to
the fuzzy set, thus the result of the comparison would be a fuzzy truth value
of F0.8. The body temperature β = 38.5 has a degree of compatibility of 1.0
to the fuzzy set, thus the result of the comparison would be ‘true’.

2.2.2 Fuzzy data: effects of conditional contexts on algorithmic elements

So far fuzzy operators can be used to model vaguely defined medical concepts. The result
of a fuzzy comparison is a fuzzy truth value that describes the degree of compatibility of the
argument to the condition. Now fuzzy truth values can influence conditional expressions,
such as the selection of data values or branches in program flow.

Example 10: (Conditional expression: selection of data)

res := () where time of it is within past 6 hours fuzzified by 30 minutes;

This expression uses the ‘where’ operator that selects from the list used as left
argument those elements where the corresponding element of the list on the
right side is ‘true’. The expression ‘is is within. . . ’ yields a list of truth values
that represent the results of the comparison operator applied to each element
of the original list (the right argument of the ‘where’ operator represented by
the keyword ‘it’).

The selection in example 10 is based on the condition whether each element is not much
older than six hours. The individual fuzzy truth value is defined by the degree of com-
patibility of each element to the condition. While the classical behavior of the ‘where’

33It has been mentioned that the definition of fuzzy sets might significantly depend on the author of a
rule, and that such definitions may be subjective.

2.2. CONCEPTUAL MODELS OF THE EXTENSIONS 45

operator is defined unambiguously (the corresponding element is only chosen if the cur-
rent element is ‘true’), fuzzy truth values as condition require a different approach as to
how values should be selected or not selected. If, for example, the current truth value is
F0.7 — should the corresponding element be chosen or not? A similar situation occurs
whenever fuzzy truth values are used by ‘if-then’ statements.

Example 11: (Conditional expression: program flow branch)

if age is greater than 18 years fuzzified by 6 months then
[..]

else
[..]

endif;

The conditional expression in example 11 controls the program flow. Like a traditional
crisp truth value the fuzzy truth value defines whether the dependent code is applicable
or not–if it is ‘false’, the code has not to be executed, if it is ‘true’ it has to. Thus, a fuzzy
truth value defines the degree of applicability of the two code blocks. As a fuzzy truth
value can be neither ‘true’ nor ‘false’, the degree of applicability is defined gradually too.

Definition 8 (degree of applicability):

Program statements that require a decision between the execution of two code
blocks include a conditional expression that yields a fuzzy truth value. The
degree of truth defines the individual degrees of applicability of both code
blocks.

The degree of applicability of the code block that should be executed if the con-
dition yields ‘true’ is equal to the fuzzy truth value. The degree of the other
code block determined by the negation of the truth value.

The problem of choosing the right code block to be executed is still to be solved. If the
degree of applicability is only partially ‘true’, the code should be executed—eventually.
This problem of binary decisions that depend on fuzzy truth values has been already
presented in the introduction of fuzzy algorithms (1.3.4).

Whenever the condition returns a truth value that is neither clearly ‘true’ nor ‘false’, a
binary decision can no longer be made. The methods to handle such fuzzy algorithms pre-
sented in the introduction had been applied in their original publications on the selection
of one element of a fuzzy set, for instance the number of steps to be made according to the
instruction “make several steps”, or realized as fuzzy relation between two fuzzy subsets.
Applying these concepts to the decision as to which element of a set with two elements
(the alternative code blocks) should be chosen, allows following solutions:

1. Probabilistic execution: The degree of applicability defines the probability of execu-
tion of the code blocks. Only one of the code blocks is executed.

2. Execution with threshold: A crisp threshold greater than 0.5 is defined: That code
block whose degree of applicability is greater than or equal to the threshold is exe-
cuted, the other one is not.

3. Parallel execution: Both code blocks are executed in parallel in every case where
the condition is not clearly ‘true’ or ‘false’. As defined by the compositional rule
of inference, both alternatives gain as much influence on the result as the condition
defines.

46 CHAPTER 2. FUZZY ARDEN SYNTAX

The first and second method behave rather crisply while the third can consider the fuzzi-
ness of the condition by assigning due importance to each alternative. Therefore, Fuzzy
Arden mainly uses this method to handle fuzzy decisions whereas the ‘threshold’ approach
is used for special situations. (The formal definitions will be made in the next section when
defining the conditional statements and the ‘where’ operator.)

According to the compositional rule of inference, all expressions within the code blocks
are influenced by the degree of applicability of the corresponding block. This degree is
termed the ‘conditional context’ of the expressions.

Definition 9 (conditional context):

Statements and operations whose execution depends on a fuzzy conditional ex-
pression have to consider the resulting uncertainty as their conditional con-
text. The conditional context indicates by a degree from F0.0 to F1.0 whether
the execution of the affected statements or expressions is “justifiable” or not.

Regarding conditional statements (if-then statement, while loop), the condi-
tional context is defined by the degree of applicability of the code blocks. Re-
garding the ‘where’ operator, the conditional context is defined by the degree of
compatibility of its conditional expression34.

If the conditional context is less than F1.0 it is termed reduced. The root
conditional context is always set to F1.0, as it only depends on the occurrence
of events (which start the execution of the MLM)35.

degree of applicability

degree of compatibility

da
ta

 m
an

ip
ul

at
io

n,
 s

uc
h

as
se

le
ct

io
n

of
 d

at
a,

 a
ss

ig
nm

en
t o

f d
at

a
to

 v
ar

ia
bl

es
, o

r
m

od
ifi

ca
tio

n
of

 d
at

a

Data values with
an additional attribute
degree of presence,
influenced by the
degree of compatibility
or by the
degree of applicability

Result: "fuzzy data"

ω

µ(ω)

0.0

0.5

1.0

yes

no

Figure 2.3: Conditional context

Figure 2.3 illustrates the two situations that cause a conditional context. Basically the
source of the context is the degree of compatibility of a value to a fuzzy condition (for
example, when using the ‘where’ operator). Another source is the degree of applicability

34The ‘where’ operator is a special case, as it does not include any other statements or expressions.
However, its functionality of selecting or not selecting elements from a list is influenced by the conditional
context.

35If Arden Syntax would include the concept of fuzzy events, which could be used as “fuzzy eligibility
criteria” for the execution of an MLM, then the root conditional context would also be reduced.

2.2. CONCEPTUAL MODELS OF THE EXTENSIONS 47

of an entire code block (which, finally, is the result of the degree of compatibility of a value
to the conditional expression used by the conditional statement).

If a data value is assigned to a variable within a conditional context of an ‘if-then’ state-
ment, the execution of the assignment is influenced by the conditional context. If the
condition yielded a crisp ‘true’, the assignment would have been definitely executed, if it
was ‘false’, it definitely would not have been executed. Therefore the data represented by
the variable would be either present or not.

If the condition yielded a fuzzy truth value the conditional context would neither be ‘true’
nor ‘false’; its influence on the assignment can be interpreted as an indicator as to whether
the value is present or not, in other words, as indication of the presence of the data.
The closer the conditional context gets to ‘true’, the more present are the corresponding
statements, operators, and finally the data. The more the context is reduced, the more do
the elements “fade away” until the context is ‘false’ and they would no longer be executed.
Analogously, the selection of data based on a partially fulfilled conditional expression of
a ‘where’ operator can be interpreted as to how “present” the selected elements are. This
indicator is termed the degree of presence of data.

Definition 10 (degree of presence):

Arden Syntax data is extended by an additional attribute degree of presence
that is defined by the conditional context in which a data value has been selected,
assigned, or modified. The degree of presence can take on values from 0.0 to
1.0.

By default, the degree of presence of data is 1.0. It is only reduced if the
selection or manipulation depends on a condition that is partially true and
cannot be directly assigned. In this document the following notation is used for
the visualization of the degree of presence:

{<data value>, <degree of presence>}
The visualization is not part of the syntax and therefore not usable in MLMs
to assign the degree of presence manually.

The degree of presence of a data value describes the context of its creation or modification.
To differ data that has been created or modified in a “classical” crisp way from data with
a reduced degree of presence, these two “types” are termed ‘crisp data’ and ‘fuzzy data’.
These classes of data are only defined for better comprehension and do not technically
define new data types, such as numbers or strings. Strictly speaking, both types of data
are crisp, as a data value is nothing but itself36.

Definition 11 (fuzzy data, crisp data):

Data that have a degree of presence less than 1.0 and greater than 0.0 are
termed fuzzy data. Data that have a degree of presence of 1.0 are termed
crisp data. Data with a degree of presence of F0.0 are equal to the ‘null’
value.

36In special, there is no relationship of “fuzzy numerical data” to the concept of ‘fuzzy numbers’. Fuzzy
numbers are special fuzzy sets that not only represent themselves, but may partially represent also other
values simultaneously. Fuzzy data of data type ‘number’ represent crisp numbers that have a reduced
degree of presence.

48 CHAPTER 2. FUZZY ARDEN SYNTAX

Lists are handled separately. They represent heterogeneous collections of data
values and can contain both fuzzy and crisp data. Their degree of presence is
always 1.0.

The following example illustrates the concept of fuzzy data by a selection of data that is
controlled by a temporal condition.

Example 12: (Compute average of test results based on fuzzy selection criterion)

The average of test results of the past three days is to be computed. In order to
additionally consider those test results which were collected shortly before this
period, the range of selected data was stretched by 12 hours using a fuzzily
defined selection. This selection is illustrated in Figure 2.4. t0 defines the
actual time of execution, t1 to t5 are time stamps of test results collected
within the preceding 84 hours.

Two of these five selected test results, collected at t4 and t5, are within the
stretched range and would not have been considered in a crisp selection. How-
ever, by making a fuzzy selection, their respective values influence the result
of this operation as well.

t

µ(t)

0.0

0.5

1.0

t0t1t2t3t4t5

12 hours 72 hours

Figure 2.4: Selection of test results from a previous period

In Fuzzy Arden, this task can be formulated in the following way:

read average {} where it occurred within past 3 days fuzzified by 12 hours

First, an institution-specific instruction within the curly braces37 returns a list
of crisp data elements from the database:

{} ⇒ (42, 40, 38, 41, 42)

The next operation contains a fuzzy operator and returns a list of fuzzy truth
values:

it occurred within past 3 days fuzzified by 12 hours ⇒ (F1.0, F1.0, F1.0, F0.9,
F0.4)

These values represent the degree of compatibility of the collection time of the
single test results with the expression ‘within past 3 days’, which is defined as
a fuzzy set with ∆x set to twelve hours.

Next, the ‘where’ operator selects elements from its left argument based on the
truth value of its right argument:

37The space within the curly braces was intentionally left blank in the example.

2.2. CONCEPTUAL MODELS OF THE EXTENSIONS 49

(42, 40, 38, 41, 42) where (F1.0, F1.0, F1.0, F0.9, F0.4) ⇒
({42, 1.0}, {40, 1.0}, {38, 1.0}, {41, 0.9}, {42, 0.4})

In this step, crisp data and fuzzy truth values are combined to fuzzy data.

The last operator computes the average of the values and must consider the
fuzziness of individual data elements. The average operator is defined in a later
section. Finally, the operation results in {40.4, 1.0}, whereas the crisp opera-
tion would have computed only the average of the first three values returning
40.

2.2.2.1 Use of crisp operators within a reduced conditional context

Whenever an operation is executed within a conditional context, the degree of presence
of its result cannot be higher than the conditional context. For example, if two crisp
strings are concatenated within a reduced conditional context, the degree of presence of
the resulting string is equal to the conditional context. If the strings were already fuzzy
data whose degree of presence was smaller than the conditional context, it would not have
further influence on the result of the operation.

Definition 12 (Influence of the conditional context on the degree of presence):

The degree of presence of the result of an operator is always less than or equal
to the conditional context that embeds the operator.

The following example illustrates this rule.

Example 13: (Influence of the conditional context on the degree of presence)

The following code fragment uses an expression ‘condition’ that yields a fuzzy
truth value F0.4 and a variable ‘var1’ that represents a fuzzy numerical value
{21, F0.8}.
0: if /* condition */ then
1: restext1 := "The value " || var1 || " has a degree of presence of "
2: || (var1 is present);
3:
4: var2 := var1 * 2;
5:
6: restext2 := "The value " || var2 || " has a degree of presence of "
7: || (var2 is present);
8: endif;

The conditional statement defines the reduced conditional context of 0.4 (line
0). The result of the first concatenation is a string that is stored in ‘restext1’
(lines 1,2). According to definition 12, it has a degree of presence of 0.4 as
defined by the conditional context.

restext1 ⇒ {”The value 21 has a degree of presence of 0.8”, 0.4}
The degree of presence of the variable ‘var1’ that is used as part of the ex-
pression is still 0.8, as it has been defined outside the conditional context and
the degree of presence of existing data values is not affected by the conditional
context.

50 CHAPTER 2. FUZZY ARDEN SYNTAX

Analogously, ‘var2’ represents a fuzzy number with a degree of presence of 0.4
that is the result of the multiplication of ‘var1’ with the constant 2 (line 4):

var2 ⇒ {42, 0.4}
The result of the last concatenation is represented by ‘restext2’ (lines 6,7):

restext2 ⇒ {”The value 42 has a degree of presence of 0.4”, 0.4}
Another example shows the list handling within a conditional context. List are ordered
sets of elements and can be heterogenous (although lists cannot be nested). They can
contain both fuzzy and crisp data.

Example 14: (list creation within reduced conditional context)

0: if /* condition */ then
1: reslist := "hl7", "arden", "syntax";
2: var2 := reslist[2];
3: endif;
The expression ‘condition’ yields a fuzzy truth value F0.3. Variable ‘reslist’
represents a newly created list (line 1) with three crisp data values.

reslist ⇒ {({”hl7”, 0.3}, {”arden”, 0.3}, {”syntax”, 0.3}), 1.0}
By using the ‘element’ operator, the second element of the list is stored in
‘var2’ (line 2). The result of the operation has a degree of presence of 0.3.

var2 ⇒ {”arden”, 0.3}

2.2.2.2 The ‘null’ value

Arden Syntax defines ‘null’ as representation of uncertainty. However, ‘null’ does not
define uncertainty in the sense of vagueness but in the sense of incompleteness. Within
conditional expressions or logical operations, ‘null’ has still to be handled separately.

Fuzzy data with a degree of presence of 0.0 is considered to be handled as ‘null’, as such
a degree of presence indicates that the conditional context during the creation of the data
value has been not fulfilled at all (thus such a data value should not exist).

2.2.3 Default ‘degree of presence’ handling

As seen in the last example, the extensions of the Arden Syntax affect not only logical
expressions but also other operators, as their arguments might consist of fuzzy data.
Therefore, the functionality of every single operator must be extended to handle such
fuzzy data or, more precisely, to handle the degree of presence of data values.

Definition 13 (Default degree of presence handling):

The result of an unary operator has the same degree of presence as the degree
of presence of the operand.

For other operators the concept of the ‘min’ operator of fuzzy logical ‘and’
operations is applied to the degrees of presence. The result of a binary or
ternary operator has a degree of presence that is at most as high as the smallest
one of any argument.

These rules apply for all operators that do not redefine the handling of fuzzy
data separately.

2.3. DEFINITION OF THE EXTENSIONS 51

The following example illustrates the default handling of the degree of presence by two
arithmetic operators and one comparison operator.

Example 15: (Default handling of the degree of presence)

The addition of number constant to a fuzzy data numerical value uses the
default handling for the degree of presence of the arguments.

3 + {4, 0.8} ⇒ {7, 0.8}
The negation of one fuzzy data numerical value keeps the degree of presence
of the argument.

−{5, 0.9} ⇒ {−5, 0.9}
A fuzzy comparison of fuzzy data with a constant returns the same result as
the comparison of a crisp one would do, but the degree of presence of the truth
value is handled as defined by the default handling.

{5 days, 0.4} is less than or equal 1 week fuzzified by 2 days ⇒ {F0.5, 0.4}

2.3 Definition of the extensions

This section defines the single extensions of Fuzzy Arden that are based on the conceptual
models as explained in the last section. These extensions can be viewed as a first step
towards extending the Arden Syntax by concepts of fuzzy set theory and fuzzy logic.
They can be used to model vagueness with a compromise of readability and backward
compatibility.

2.3.1 Fuzzy data model

The truth data type is extended and termed ‘fuzzy truth’ as defined on page 43. Fuzzy
truth constants are notated by the keyword ‘fuzzy’ followed by a number and can represent
any degree of truth from F1.0 (‘true’) to F0.0 (‘false’). ‘True’ and ‘false’ are still usable
as keywords.

Table 2.2: Fuzzy and crisp Arden Syntax data values

type/classification sample values
fuzzy truth true, F0.9, fuzzy 0.50, F0.3, false

crisp ”hl7”
42
2002-05-01T12:00:00
{”hl7”, 1.0}

fuzzy {”hl7”, 0.5}
{42,0.5}
{2002-05-01T12:00:00, 0.78}
{”hl7”, 0.1}

null {”hl7”, 0.0}
null

52 CHAPTER 2. FUZZY ARDEN SYNTAX

Arden Syntax data has two attributes, viz. the primary time attribute and the degree of
presence attribute as defined on page 47. If the degree of presence is below 1.00 the data
value is classified as fuzzy data; if the degree of presence is 1.00 it is defined as crisp data.
A degree of presence of 0.00 is equivalent to ‘null’. Table 2.2 shows some sample data
values.

2.3.2 Fuzzy operators

Fuzzy operators are comparison operators whose thresholds are fuzzified. In summary,
all ‘simple comparison’ operators and subsets of the ‘is comparison’ and ‘occur’ operators
were redefined as fuzzy operators. Comparisons between strings and the ‘matches pattern’
operator, which compares string values to given patters, could basically be fuzzy operators
too. However, in this stage of the extension they are handled as crisp comparisons, as
linguistic comparisons can be very complex.

The fuzzy operators are defined according the following notations38. Data type constraints
are defined by:

<num:type> := <num:type> op <num:type> op <num:type>

If available, the linguistic operator names are used to define the fuzzy operators (‘op’).
The Arden Syntax specification defines the following keywords that can be used as type
definition:

Boolean Boolean data type
number number data type
time time data type
duration duration data type
string string data type
item used only in ‘call’ statements
any-type null, Boolean, number, time, duration, or string
non-null Boolean, number, time, duration, or string
ordered number, time, duration, or string

For the extended operators, two new keywords ‘numerical’ and ‘fuzzy’ are used additionally
to the predefined type definitions:

numerical fuzzy truth, number, time, or duration
fuzzy fuzzy truth

A comparison operator defines one value or a range of values where it yields ‘true’. By
fuzzification, this range of valid arguments is either extended or reduced. It is extended
for those operators where the thresholds originally were included in the range of valid
arguments, such as the ‘greater than or equal’ operator (a value that is slightly smaller
than the threshold may still be classified as “equal” somehow). It is reduced for those
operators that did not include the thresholds in the range of valid values, such as the
‘greater than’ operator (a value that is slightly greater than the threshold may be classified
as not sufficiently greater).

38Parts of the (re-)definitions of operators are cited from the specification without being marked as
citations. This affects only some passages that are not influenced by the fuzzy extensions.

2.3. DEFINITION OF THE EXTENSIONS 53

Each fuzzy comparison operator definition illustrates the reduction or extension of this
range by a graph that sketches the compatibility function. The differences of the range
that is extended or reduced is indicated by a hatched area, where a hatched area above the
compatibility function indicates a reduced range and a hatched area below the function
indicates an extended range of valid values.

2.3.2.1 is equal

The = operator has two synonyms: ‘eq’ and ‘is equal’ and checks for equality returning
a fuzzy truth value. If the arguments are of different types, ‘false’ is returned. If an
argument is ‘null’, then ‘null’ is always returned. When used with a numerical argument,
an optional ‘fuzzified by’ argument can be defined that modifies the compatibility function
as shown in figure 2.5.

<n:fuzzy> := <n:numerical> is equal <n:numerical> [fuzzified by <n:numerical>]

���
���
���
���
���
���

���
���
���
���
���
���

ω

µ(ω)

0.0

0.5

1.0

x0
∆x∆x

Figure 2.5: Fuzzy operator: compatibility function ’is equal’

Its use is: F0.0 := 110 is equal 100 fuzzified by 10;

F0.5 := 110 is equal 100 fuzzified by 20;

F0.66 := 110 is equal 100 fuzzified by 30;

false := 42 is equal "42" fuzzified by 1;

null := 3 days is equal 72 hours fuzzified by null;

2.3.2.2 is not equal

The <> operator has two synonyms: ‘ne’ and ‘is not equal’. It checks for inequality,
returning a fuzzy truth value. If the arguments are of different types, ‘true’ is returned. If
an argument is ‘null’, then ‘null’ is returned. When used with a numerical argument, an
optional ‘fuzzified by’ argument can be defined that modifies the compatibility function
as shown in figure 2.6.

<n:fuzzy> := <n:numerical> is not equal <n:numerical> [fuzzified by <n:numerical>]

���
���
���
���
���
���

���
���
���
���
���
���

ω

µ(ω)

0.0

0.5

1.0

x0
∆x ∆x

Figure 2.6: Fuzzy operator: compatibility function ’is not equal’

54 CHAPTER 2. FUZZY ARDEN SYNTAX

Its use is: F1.0 := 110 is not equal 100 fuzzified by 10;

F0.5 := 110 is not equal 100 fuzzified by 20;

F0.33 := 110 is not equal 100 fuzzified by 30;

true := 42 is not equal "42" fuzzified by 1;

null := 3 days is not equal 72 hours fuzzified by null;

2.3.2.3 is less than

The < operator has three synonyms: ‘lt’, ‘is less than’, and ‘is not greater than or equal’.
It is used on ordered types; if the types do not match, ‘null’ is returned. When used with
a numerical argument, an optional ‘fuzzified by’ argument can be defined that modifies
the compatibility function as shown in figure 2.7.

<n:fuzzy> := <n:numerical> is less than <n:numerical> [fuzzified by <n:numerical>]

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

x0
∆x

Figure 2.7: Fuzzy operator: compatibility function ’is less than’

Its use is: true := 30-06-2002 is less than 01-07-2002;

F0.5 := 30-06-2002 is less than 01-07-2002 fuzzified by 2 days;

F0.02 := 99 is less than 100 fuzzified by 50;

null := 3 days is less than "72 hours";

2.3.2.4 is less than or equal

The <= operator has three synonyms: ‘le’, ‘is less than or equal’, and ‘is not greater than’.
It is used on ordered types; if the types do not match, ‘null’ is returned. When used with
a numerical argument, an optional ‘fuzzified by’ argument can be defined that modifies
the compatibility function as shown in figure 2.8.

<n:fuzzy> := <n:numerical> is less than or equal <n:numerical> [fuzzified by
<n:numerical>]

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

x0
∆x

Figure 2.8: Fuzzy operator: compatibility function ’is less than or equal’

2.3. DEFINITION OF THE EXTENSIONS 55

Its use is: false := 05-07-2002 is less than or equal 01-07-2002;

F0.71 := 05-07-2002 is less or equal than 01-07-2002 fuzzified by 1 week;

F0.4 := 38.2 is less than or equal 38.0 fuzzified by 0.5;

null := 3 days is less than or equal "72 hours";

2.3.2.5 is greater than

The > operator has three synonyms: ‘gt’, ‘is greater than’, and ‘is not less than or equal’.
It is used on ordered types; if the types do not match, ‘null’ is returned. When used with
a numerical argument, an optional ‘fuzzified by’ argument can be defined that modifies
the compatibility function as shown in figure 2.9.

<n:fuzzy> := <n:numerical> is greater than <n:numerical> [fuzzified by
<n:numerical>]

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

x0
∆x

Figure 2.9: Fuzzy operator: compatibility function ’is greater than’

Its use is: true := 02-07-2002 is greater than 01-07-2002;

F0.5 := 02-07-2002 is greater than 01-07-2002 fuzzified by 2 days;

F0.02 := 101 is greater than 100 fuzzified by 50;

null := 3 days is greater than "72 hours";

2.3.2.6 is greater than or equal

The >= operator has three synonyms: ‘ge’, ‘is greater than or equal’, and ‘is not less
than’. It is used on ordered types; if the types do not match, ‘null’ is returned. When
used with a numerical argument, an optional ‘fuzzified by’ argument can be defined that
modifies the compatibility function as shown in figure 2.10.

<n:fuzzy> := <n:numerical> is greater than or equal <n:numerical> [fuzzified by
<n:numerical>]

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

x0
∆x

Figure 2.10: Fuzzy operator: compatibility function ’is greater than or equal’

56 CHAPTER 2. FUZZY ARDEN SYNTAX

Its use is: false := 30-06-2002 is greater than or equal 01-07-2002;

F0.14 := 30-06-2002 is greater or equal than 01-07-2002 fuzzified by 1 week;

F0.5 := 1 day is greater than or equal 25 hours fuzzified by 2 hours;

null := 3 days is greater than or equal "72 hours";

2.3.2.7 is within to

The ‘is within . . . to’ operator checks whether the first argument is within the range speci-
fied by the second and third arguments; the range is inclusive. It is used on ordered types;
if the types do not match, ‘null’ is returned. Optional ‘fuzzified by’ arguments can be
defined that modify the compatibility function as shown in figure 2.11.

<n:fuzzy> := <n:numerical> is within <n:numerical> [fuzzified by <n:numerical>] to
<n:numerical> [fuzzified by <n:numerical>]

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

ω

µ(ω)

0.0

0.5

1.0

x0
∆x0

x1
∆x1

Figure 2.11: Fuzzy operator: compatibility function ’is within to’

Its use is: true := 110 is within 100 fuzzified by 20 to 120 fuzzified by 20;

F1.0 := 100 is within 100 fuzzified by 20 to 120 fuzzified by 20;

F0.25 := 85 is within 100 fuzzified by 20 to 120 fuzzified by 20;

false := 150 is within 100 fuzzified by 20 to 120 fuzzified by 20;

2.3.2.8 is within preceding

The ‘is within . . . preceding’ operator checks whether the left argument is within the
inclusive time period defined by the second two arguments (from the third argument
minus the second to the third). Optional ‘fuzzified by’ arguments can be defined that
modify the compatibility function as shown in figure 2.12.

<n:fuzzy> := <n:time> is within <n:duration> [fuzzified by <n:duration>]
preceding <n:time> [fuzzified by <n:duration>]

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

ω

µ(ω)

0.0

0.5

1.0

x0 ∆x0t∆t

t0 t1 t2 t3 t4

Figure 2.12: Fuzzy operator: compatibility function ’is within preceding’

2.3. DEFINITION OF THE EXTENSIONS 57

To keep the examples short for this and some of the following operators, some time stamps
are sketched exemplarily in the corresponding compatibility function graphs. Assuming
that ‘t0’ represents 2002-09-08T09:36:00, ‘t1’ represents 2002-09-09T00:00:00, ‘t2’ repre-
sents 2002-09-10T12:00:00, ‘t3’ represents 2002-09-12T12:00:00, and finally ‘t4’ represents
2002-09-12T16:48:00, the use of the ‘is within preceding’ operator is:

false := t0 is within 3 days fuzzfied by 1 day preceding t3 fuzzified by 12 hours;

F0.5 := t1 is within 3 days fuzzfied by 1 day preceding t3 fuzzified by 12 hours;

true := t2 is within 3 days fuzzfied by 1 day preceding t3 fuzzified by 12 hours;

F0.6 := t4 is within 3 days fuzzfied by 1 day preceding t3 fuzzified by 12 hours;

2.3.2.9 is within following

The ‘is within . . . following’ operator checks whether the left argument is within the in-
clusive time period defined by the second two arguments (from the third argument to the
third plus the second). Optional ‘fuzzified by’ arguments can be defined that modify the
compatibility function as shown in figure 2.13.

<n:fuzzy> := <n:time> is within <n:duration> [fuzzified by <n:duration>] following
<n:time> [fuzzified by <n:duration>]

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

ω

µ(ω)

0.0

0.5

1.0

x0∆x0 t ∆t

t0 t1 t2 t3 t4

Figure 2.13: Fuzzy operator: compatibility function ’is within following’

Its use is (assuming that the variables represent the same time stamps as in the last
example):

false := t0 is within 3 days fuzzfied by 1 day following t1 fuzzified by 12 hours;

true := t2 is within 3 days fuzzfied by 1 day following t1 fuzzified by 12 hours;

F0.5 := t3 is within 3 days fuzzfied by 1 day following t1 fuzzified by 12 hours;

F0.3 := t4 is within 3 days fuzzfied by 1 day following t1 fuzzified by 12 hours;

2.3.2.10 is within surrounding

The ‘is within . . . surrounding’ operator checks whether the left argument is within the
inclusive time period defined by the second two arguments (from the third argument minus
the second to the third plus the second). Optional ‘fuzzified by’ arguments can be defined
that modify the compatibility function as shown in figure 2.14.

<n:fuzzy> := <n:time> is within <n:duration> [fuzzified by <n:duration>]
surrounding <n:time>

58 CHAPTER 2. FUZZY ARDEN SYNTAX

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

ω

µ(ω)

0.0

0.5

1.0

x0 ∆t∆t tt

t0 t1 t2 t3

Figure 2.14: Fuzzy operator: compatibility function ’is within surrounding’

Its use is (assuming that ‘t0’ represents 2002-09-06T21:36:00, ‘t1’ represents 2002-09-
08T12:00:00, ‘t2’ represents 2002-09-09T04:48:00, and ‘t3’ represents 2002-09-09T21:36:00):

false := t0 is within 1 day fuzzified by 12 hours surrounding t1;

true := t2 is within 1 day fuzzified by 12 hours surrounding t1;

F0.2 := t3 is within 1 day fuzzified by 12 hours surrounding t1;

2.3.2.11 is within past

The ‘is within past’ operator checks whether the left argument is within the time period
defined by the right argument (‘now’ minus the right argument to ‘now’, where ‘now’
represent the time when the execution of the MLM started). The time period can be
extended by an optional ‘fuzzified by’ argument that modifies the compatibility function
as shown in figure 2.15.

<n:fuzzy> := <n:time> is within past <n:duration> [fuzzified by <n:duration>]

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

now − t
∆t

now

Figure 2.15: Fuzzy operator: compatibility function ’is within past’

Its use is (assuming that ‘t0’ represents 2002-09-06T21:36:00, ‘t1’ represents 2002-09-
08T12:00:00, ‘t2’ represents 2002-09-09T04:48:00, and ‘t3’ represents 2002-09-09T21:36:00):

Its use is: false := (now - 5 hours) is within past 2 hours fuzzified by 2 hours;

F0.5 := (now - 3 hours) is within past 2 hours fuzzified by 2 hours;

true := (now - 2 hour) is within past 2 hours fuzzified by 2 hours;

2.3.2.12 is within same day as

The ‘is within same day as’ operator checks whether the left argument is on the same day
as the second argument. The time period can be extended by an optional ‘fuzzified by’
argument that modifies the compatibility function as shown in figure 2.16.

<n:fuzzy> := <n:time> is within same day as <n:date> [fuzzified by <n:duration>]

2.3. DEFINITION OF THE EXTENSIONS 59

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

∆d∆d d
x0

t0 t1 t2

Figure 2.16: Fuzzy operator: compatibility function ’is within same day as’

Its use is (assuming that ‘t0’ represents 2002-09-08T21:36:00, ‘t1’ represents 2002-09-
09T12:00:00, and ‘t2’ represents 2002-09-09T16:48:00):

Its use is: F0.6 := t0 is within same day as t2 fuzzified by 12 hours;

true := t1 is within same day as t2 fuzzified by 12 hours;

2.3.2.13 is before

The ‘is before’ operator checks whether the left argument is before the second argument.
The time period can be reduced by an optional ‘fuzzified by’ argument that modifies the
compatibility function as shown in figure 2.17.

<n:fuzzy> := <n:time> is before <n:time> [fuzzified by <n:duration>]

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

t0
∆t

t0 t1 t2

Figure 2.17: Fuzzy operator: compatibility function ’is before’

Its use is (assuming that ‘t0’ represents 2002-09-08T12:00:00, ‘t1’ represents 2002-09-
09T00:00:00, and ‘t2’ represents 2002-09-09T12:00:00):

true := t0 is before t2 fuzzified by 1 day;

F0.5 := t1 is before t2 fuzzified by 1 day;

2.3.2.14 is after

The ‘is after’ operator checks whether the left argument is after the second argument.
The time period can be reduced by an optional ‘fuzzified by’ argument that modifies the
compatibility function as defined in figure 2.18.

<n:fuzzy> := <n:time> is before <n:time> [fuzzified by <n:duration>]

Its use is (assuming that ‘t0’ represents 2002-09-08T12:00:00, ‘t1’ represents 2002-09-
09T00:00:00, and ‘t2’ represents 2002-09-10T00:00:00):

60 CHAPTER 2. FUZZY ARDEN SYNTAX

��
��
��
��
��
��

��
��
��
��
��
��

ω

µ(ω)

0.0

0.5

1.0

t0
∆t

Figure 2.18: Fuzzy operator: compatibility function ’is after’

F0.5 := t1 is after t0 fuzzified by 1 day;

false := t2 is after t0 fuzzified by 1 day;

2.3.3 Crisp operators

This section defines the functionality of crisp operators for processing fuzzy data. Working
with fuzzy data requires correct handling of the degree of presence that has, analogous
to the primary time attribute, to be computed for the result of an operation and might
additionally influence the result in its value.

As defined by definition 13 on page 50, a unary crisp operator keeps the degree of presence
of its only argument. If a crisp operator has more than one argument, the presence
attribute of the result equals the minimum of the individual presence attributes of its
arguments.

Next, only those operators which are influenced by the degree of presence of their argu-
ments in other ways than defined by the default handling are defined separately. The
order of the operator categories in this section follows their order in the specification.

2.3.3.1 List operators

Basically the list operators follow the default handling of fuzzy data. However, as lists are
just collections of data and cannot have a reduced degree of presence, the lists operators
are described briefly.

List concatenation

The list concatenation operator ‘,’ creates a list from one data value or by appending two
or more data values which can also be lists. The result is always one list containing the
data in their order as arguments. If one argument is a list, its elements are copied instead
of storing the list as one element of the new one, as a list cannot be nested. The degree
of presence of the resulting list is always 1.0.

Merge

The ‘merge’ creates a list by appending two lists and additionally sorts the result by the
primary time of the list elements.

Sort

The sort operators ‘sort data’ and ‘sort time’ reorder a list either by the value of the
elements or by their primary time. The individual degree of presence of the elements is
retained. Additionally, a new sort operator ‘sort presence’ that sorts the elements of a list
in ascending order by their degree of presence is defined.

2.3. DEFINITION OF THE EXTENSIONS 61

The ‘sort’ operator reorders a list based on element keys, which are either
the element values (keyword data), the primary times (keyword ‘time’), or
the degrees of presence (keyword ‘presence’). An optional modifier may be
used with the sort operator. If used, the corresponding modifier must be
placed immediately after the ‘sort’ keyword. The following keywords can be
placed after the sort keyword: ‘data’, ‘time’, or ‘presence’, which are mutually
exclusive. If no modifier is used, the ‘sort’ operator defaults to a ‘data sort’.
The data are always sorted in ascending order. For sorting in descending order,
‘reverse’ can be used.

<n:any-type> := sort [data | time | presence] <n:any-type>

The sort options are considered to be part of the ‘sort’ operator for precedence
purposes. This resolves the potential conflict with the ‘time [of]’ and ‘is present’
operators. Thus the expression ‘sort time x’ should be parsed as “sort the list x
by time” rather than as “extract the primary times from the list x and sort the
list of times”. Analogously, the expression ‘sort presence x’ should be parsed
as “sort the list x by the degree of presence”.

Its use is (assuming that ‘data1’ has a data value of {30, 0.1}, {10, 1.0}, {20,
0.5}:

{10, 1.0}, {20, 0.5}, {30, 0.1} := sort data data1;

{20, 0.5}, {10, 1.0}, {30, 0.1} := sort presence data1;

Element

The Arden Syntax specification defines one particular list operator, the ‘element’ operator,
in the ‘aggregation operators’ section. In this work, it is redefined in the current section
instead of following the order of the specification document, to complete the set of list-
specific operators.

The binary ‘element’ operator can be used to extract one or more elements of a list. The
result is either a single value or a list; the degree of presence of the value or of the list
elements is retained.

2.3.3.2 Where operator

The ‘where’ operator plays an important role when using Fuzzy Arden, as it can be used
to create fuzzy data by selecting crisp data based on fuzzy truth values.

Where (binary, non-associative)
The ‘where’ operator performs the equivalent of a relational ‘select . . . where . . . ’ on its
left argument. In general, the left argument is a list, often the result of a query to the
database. The right argument is usually of the fuzzy truth type (although this is not
required), and must be the same length as the left argument.

<n:any-type> := <m:any-type> where <m:any-type>

62 CHAPTER 2. FUZZY ARDEN SYNTAX

If called with crisp truth values, the result is a list that contains only those elements of the
left argument where the corresponding element in the right argument is ‘true’. If the right
argument is anything else, including ‘false’, ‘null’, or any other type, then the element in
the left argument is dropped.

Example 16: (Where operator on crisp truth values)

(10, 30) := (10, 20, 30, 40) where (true, false, true, 3)

If the right argument contains fuzzy truth values, it drops only those elements of the left
argument where the corresponding element of the left element is ‘false’, ‘null’, or any other
data type. The resulting list contains all those elements whose corresponding truth value
is greater than F0.0. If the truth value is higher than ‘false’ but not ‘true’ the resulting
element is a fuzzy data type with its degree of presence equal to the fuzzy truth value.

Example 17: (Where operator on fuzzy truth values)

(10, {30, 0.5}) := (10, 20, 30, 40) where (true, false, F0.5, 3)

If the left argument contains fuzzy data, the degree of presence of the elements in the
result list is set to the minimum of the corresponding degrees of presence:

Example 18: (Where operator on crisp truth values: further examples)

({"a", 1.0}, {2, 0.3}) := ("a", [2, 0.3], "c") where (true, F0.5, false)
({"a",1.0}, {"a",0.5}) := "a" where (true, F0.5, false)
("a", {2, 0.3}, "c") := ("a", {2, 0.3}, "c") where true
({"a", 0.2}, {2, 0.2}, {"c", 0.2}) := ("a", {2, 0.3}, "c") where F0.2

2.3.3.3 Logical operators

The ‘and’ operator performs the logical conjunction and the ‘or’ operator the logical
disjunction of their two arguments. The ‘not’ operator performs the logical negation of
its argument.

<n:Boolean> := <n:any-type> and <n:any-type>

<n:Boolean> := <n:any-type> or <n:any-type>

<n:Boolean> := not <n:any-type>

The three-valued logic is extended by fuzzy logical operators. The truth tables of the three
operators ‘and’, ‘or’, and ‘not’ are shown in table 2.3. The degree of presence of the fuzzy
truth value is handled by the default handling.

The ‘fuzzy and’ and ‘fuzzy or’ operators are mathematically defined by the ‘min’ and
‘max’ operators:

(x1 and x2) := min(x1, x2) (2.1)

(x1 or x2) := max(x1, x2) (2.2)

The option of choosing alternative operator sets could be included in the future develop-
ment of the syntax.

2.3. DEFINITION OF THE EXTENSIONS 63

Table 2.3: Fuzzy logical operators truth-tables

x1 and x2 true F0.x false other x1 or x2 true F0.x false other
true true x2 false null true true true true true

F0.x x1 fuzzy and false null F0.x true fuzzy or x1 x1

false false false false false false true x2 false null
other null null false null other true x2 null null

not x1 true F0.x false other
false 1− x1 true null

2.3.3.4 Is operators

The following operators are defined in the ‘is operators’ class in addition to the fuzzily
defined ones in sections 2.3.2.7 to 2.3.2.14.

Is present: The ‘is present’ operator has one synonym: ‘is not null’. (Similarly, ‘is not
present’ has one synonym: ‘is null’.) If the argument is not ‘null’ then the operator
returns its degree of presence as fuzzy truth value; otherwise it returns ‘false’. The
degree of presence of the result is 1.0.

<n:fuzzy> := <n:any-type> is present

Is in: The ‘is in’ operator checks for membership of the left argument in the right argu-
ment, which is usually a list.

<n:fuzzy> := <n:any-type> is in <m:any-type>

The criterion whether a data value is an element of the list is restricted to the
value and does not include the need for equality of the attributes ‘primary time’
and ‘degree of presence’. If an element is found to be contained in both arguments,
the result is a fuzzy truth value that equals the lower degree of presence of both
elements. The degree of presence of the single results is 1.0.

Example 19: (Crisp is-operators)

(F0.8, true, false, false) := ({1, 0.8}, {2, 1.0}, {3, 0.0}, null) is present;
(F0.7, F0.8, F0.3) := (1, {2, 0.8}, {3, 0.4}) is in ({1, 0.7}, 2, {3, 0.3});
(true, false, false) := (1, 2, {3, 0.8}) is in (1);

(true, true) := (null, {1, 0.0}) is in ("a", "b", "c");

2.3.3.5 Aggregation operators

Most aggregation operators handle the degree of presence of their arguments in the default
way. The following operators handle the degree of presence of their arguments alterna-
tively. The degree of presence of their result is 1.0.

64 CHAPTER 2. FUZZY ARDEN SYNTAX

exist: The ‘exist’ operator returns ‘true’ if the argument contains at least one crisp non-
‘null’ item in the list. Otherwise it returns a fuzzy truth value that equals the highest
degree of presence attribute of any item of the argument.

<1:truth> := exists <n:any-type>

average: The ‘average’ operator calculates the average of a numerical list.

<1:numerical> := average <n:numerical>

If the list contains fuzzy data, a weighted average is computed by applying:

avg([x1 . . . xn]) :=
∑

n xnµ(xn)∑
n µ(xn)

(2.3)

median: The ‘median’ operator calculates the median value of a numerical list. The list
is first sorted. If there is an odd number of items, it selects the middle value and
its degree of presence is kept. If the size of the list is even, the average of the two
middle items is computed, as defined by the ‘average’ operator.

<1:numerical> := median <n:numerical>

any: Originally, the ‘any’ operator returns ‘true’ if at least one of the items in a list
is ‘true’. If used with fuzzy truth values, it returns the highest fuzzy truth value
(comparable to a fuzzy logical ‘or’ operation by applying the ‘max’ operator). It
returns ‘null’, if any non-fuzzy truth value39 is an element of the list.

<1:truth> := any <n:any-type>

all: Originally, the ‘all’ operator returns ‘true’ if all of the items in a list are ‘true’. If
used with fuzzy truth values, it returns the lowest fuzzy truth value (comparable to
a fuzzy logical ‘and’ operation by applying the ‘min’ operator). It returns ‘null’ if
any non-fuzzy truth value is an element of the list.

<1:truth> := all <n:any-type>

no: The result of the ‘no’ operator is equal to the operation ‘not any’.

<1:truth> := no <n:any-type>

2.3.4 Statements for program flow control

Conditional statements that control the execution of an algorithm (‘program flow’) are
partly responsible for the creation or modification of data in an uncertain environment
termed ‘conditional context’ (this concept has been defined earlier in section 2.2.2.). This
section defines the ‘if-then’, ‘while’, and ‘conclude’ statements that can create new condi-
tional contexts and might also be influenced by their current conditional context.

39Any string, number, date, or duration, regardless whether fuzzy or crisp data.

2.3. DEFINITION OF THE EXTENSIONS 65

2.3.4.1 If-then statement

An Arden Syntax ‘if-then’ statement controls whether a block of statements (referenced as
code block in the following) has to be executed or not. It is only executed if the condition
is met; otherwise an optional ‘else’ block is executed. If the condition has no crisp result,
both blocks are executed in parallel; the degree of truth of the condition defines the degree
of applicability of the first code block, the complement defines the degree of applicability
of the else code block.

(b)

? (a)

degree of applicability: 1.0

degree of applicability: ddegree of applicability: d

degree of applicability: 1 − d

if <conditional expression> then

else

endif;

no

yes inner code block (a)

inner code block (b)

Figure 2.19: Scheme for a fuzzy ‘if-then’ statement

Figure 2.19 shows a scheme for a fuzzy ‘if-then’ statement; the gray boxes stand for
the degree of applicability of the individual code block and therefore for the corresponding
conditional context of all included statements and operators. The place holder d represents
the degree of truth of the conditional expression. The degree of applicability of the code
block that encloses the entire statement is 1.0 as long its execution does not depend on
any conditions.

Example 20: (Calculation of drug dose)

Assuming that the dose of a drug is dependent on the patient’s age, the correct
dose is calculated by two equations: one is suitable for children, the other for
adults. As the equations return significantly different results, both equations
are embedded in a fuzzified ‘if-then-else’ construct that uses a fuzzily defined
condition.

The fuzzy sets “child” and “adult” were defined in example 2 on page 22. If the
variable birthdate would represent the patient’s date of birth, one possible
implementation in Arden Syntax would be:

0: age := (now - birthdate) / 1 year;
1: if age is less than or equal 17 fuzzified by 2 then
2: dose := call equation1; /* equation 1 */;
3: else
4: dose := call equation2; /* equation 2 */;
5: endif;

As long as the patient is younger than 17 years or older than 19 years, the
statement will behave crisply and return either the result of equation 1 or
equation 2. If his age is in the borderline range, both code blocks will be
executed and the variable ‘dose’ represents in two different conditional contexts
two different fuzzy values (lines 2,4).

66 CHAPTER 2. FUZZY ARDEN SYNTAX

Assuming that the patient’s age is 17.5 years, the result of the conditional
expression is F0.75; thus the degree of applicability for the first equation is
0.75 and for the second it is 0.25.

Let us assume that r1 is the numerical result of equation 1 and r2 �= r1 the
result of equation 2. The value represented by the variable ‘dose’ in the first
code block would be the fuzzy value {r1, 0.75}. Analogously, the value of the
same variable in the second code block would be {r2, 0.25}.

As shown in this example, an ‘if-then’ statement40 that uses a fuzzily defined condition can
have an ambiguous result; in this case, the same variable represents two different values,
each by a different degree of presence. To get an overall result, both values have to be
processed and the “fuzziness” of their parallel existence has to be “defuzzified”.

Following the compositional rule of inference, each sub-result should gain as much influence
on the overall result as the degree of applicability of its conditional environment implies.
This works well for numerical values, but other combinations of data or of conditional
contexts require different methods to “defuzzify” the results and transfer them back to
the higher conditional context that embedded the current one.

Definition 14 (“Defuzzification” of data in parallel conditional contexts):

Case 1: One numerical variable (number, date, time, fuzzy truth) represents
in two parallel, inverse conditional contexts two different values xn

1 and xn
2

of the same data type. Its value xn−1 in the superior conditional context is
computed as the weighted average of the two sub-results:

avg(x1, x2) :=
x1µ(x1) + x2µ(x2)

µ(x1) + µ(x2)
(2.4)

The degree of presence of the result is set to the superior conditional context
(that might be 1.0 in case that the superior context is the root context).

µ(xn−1) := conditional contextn−1 (2.5)

Case 2: One variable represents in two parallel, inverse conditional contexts
two different values xn

1 and xn
2 of the same non-numerical type (string, list,

. . .) or of two different data types. Its value xn−1 in the superior conditional
context is defined by selecting the value with the highest degree of presence (if
both values have the same degree of presence, the first is chosen).

The degree of presence of the result is computed by

µ(xn−1) := conditional contextn−1 · µ(xn) (2.6)

If the result is a list, the individual degree of presence of every list element is
computed analogously.

Case 3: One variable represents in one conditional context one value xn of
any type. Its value is kept, its degree of presence in the superior conditional
context is computed analogous to case 2 by

µ(xn−1) := conditional contextn−1 · µ(xn) (2.7)
40The example uses an ‘if-then’ and an ‘else’ statement. As the latter cannot be used without the first

one, both are further referenced as ‘if-then’ statements.

2.3. DEFINITION OF THE EXTENSIONS 67

By these methods, two approaches of fuzzy algorithms are used for the execution of con-
ditional statements and the evaluation of their results. The inherent parallelism of the
compositional rule of inference is applied to the execution of two alternative code blocks
in case 1. If both alternatives compute two results of one variable and the two results can
be averaged, each result gains influence according to the concept of the compositional rule
of inference as defined by the conditional expression. If the values cannot be averaged
(case 2 and 3), the concept of ‘execution with threshold’ is applied by choosing the result
with the higher degree of presence (compare section 1.3.4).

The degree of presence is computed in two different ways. In case 1, where both alternatives
gain influence according to the conditional contexts, the result has the same degree of
presence as defined by the conditional context that embeds the alternatives. In the other
cases, where only one alternative gains influence and the other is lost, the degree of
presence of the result must be reduced to point out the difference to case 1. This is done
by multiplying the degree of presence of the result in the embedded conditional context
by the surrounding conditional context. The next examples illustrate this concept.

Example 21: (“Defuzzification”, case 1: Calculation of drug dose, cont.)

By applying the defuzzification method in example 20 the result of the com-
putation would be

r0 =
x1µ(x1) + x2µ(x2)

µ(x1) + µ(x2)

= { x1µ(x1)+x2µ(x2)
µ(x1)+µ(x2) , 1.00}

A more generic example shows how to “defuzzify” data by in case 2 and case 3.

Example 22: (“Defuzzification”, case 2 and 3)

The following code snippet is given:

/**
* 3 blood pressure values: F1.0 := bp1 is present
* F1.0 := bp2 is present
* F0.7 := bp3 is present
**/

if risk is greater than 80 fuzzified by 10 then
msg := "Please contact your doctor immediately!";
res_list := bp1, bp2, bp3;

else
msg := "No action required.";

endif;

Three variables, ‘bp1’, ‘bp2’, and ‘bp3’, represent three blood pressure values.
The last was selected on the basis of a not absolutely fulfilled condition and
has therefore a reduced degree of presence. Table 2.4 shows the value of the
message variable and the degrees of presence of both result variables, depending
on the value of the variable ‘risk’.

If the risk factor is not greater than 80, then the degree of applicability of the
first code block is 0.0 and that of the second code block is 1. The final value
of ‘msg’ is unambiguously the one defined in the second block, the variable
‘res list’ is ‘null’.

68 CHAPTER 2. FUZZY ARDEN SYNTAX

Table 2.4: Results of example 22

‘risk’ ‘msg’ µ(‘res list’)
value µ(‘msg’)

80 "No act..." 1.0 null
85 "Please..." 0.5 0.5, 0.5, 0.35
90 "Please..." 1.0 1.0, 1.0, 0.7

If the risk factor is 85 then the condition is partly fulfilled by a degree of
F0.5 and both blocks are executed. As the values of the variables cannot be
averaged, the one with the higher degree of presence is chosen. As both have
the same degree of presence within their code blocks, the values out of the
‘true’ code block are taken as the results.

So far, the influence of the conditional context on the degree of presence of operator
results and the handling of variables has been described. A further important aspect is
the influence of the conditional context on other conditional contexts. Such contexts,
which can be defined for example by nested ‘if-then’ statements, depend not only on the
underlying conditional expression, but also on the current conditional context.

Definition 15 (Degree of applicability in nested conditional contexts):

If a conditional statement is used within a reduced conditional context, the
resulting degree of applicability of the depending code blocks is computed by
multiplying the result of the conditional expression with the current conditional
context. This affects all included ‘if-then’ statements and ‘while’ loops.

The sum of two parallel, inverse conditional contexts is always equal to the value of the
conditional context that embeds them. The following example illustrates the concept of
nested conditional contexts.

Example 23: (Nested ‘if-then’ statements)

This abstract example combines two ‘if-then’ statements to a nested ‘if-then-
else’ construct as shown in figure 2.20. The code blocks are referenced as
(1), (1.1), (1.2), et cetera. The degree of applicability of the code blocks
is referenced as d1 and d2, the overall degree of applicability of the entire
construct is set to d0 = 1.0.

This example uses two variables, ‘res1’ and ‘res2’, that represent different val-
ues, depending on two conditional expressions.

1. The first conditional expression yields a fuzzy truth value F0.8. Therefore
code block (1.1) has a degree of applicability 0.8 while code block (1.2)
has a degree of applicability 0.2.

2. The second conditional expression yields a fuzzy truth value F0.3. The
degree of applicability of the depending code blocks (1.1.1) and (1.1.2)
is determined by multiplying the degree of truth 0.3 with the current
conditional context 0.8. Code block (1.1.1) has a degree of applicability
0.24, code block (1.1.2) has a degree of applicability 0.56.

2.3. DEFINITION OF THE EXTENSIONS 69

?

?

degree of applicability: 1.0

degree of applicability: d1 = 0.8

degree of applicability: d1d2 = 0.24

degree of applicability: d1(1 − d2) = 0.56

degree of applicability: 1 − d1 = 0.2

if <conditional expression> then

if <conditional expression> then

else

else

endif;

endif;

no

no

yes

yes

(1)

(1)

(1.1)

(1.1)

(1.1.1)

(1.1.1)

(1.1.2)

(1.1.2)

(1.2)

(1.2)

res1 := 42;
res2 := ”a”;

res1 := 18;
res2 := ”b”;

res1 := 30;
res2 := ”c”;

Figure 2.20: Scheme for a nested fuzzy if-then statement

3. During the execution of the algorithm, variable res1 represents following
fuzzy values:

(1.1.1) : {42, 0.24}
(1.1.2) : {18, 0.56} ⇒ (1.1) : {25.2, 0.8}

(1.2) : {30, 0.2} ⇒ (1) : {26.16, 1.0}
4. Variable res2 represents in the process of execution following fuzzy values:

(1.1.1) : {”a”, 0.24}
(1.1.2) : {”b”, 0.56} ⇒ (1.1) : {”b”, 0.45}

(1.2) : {”c”, 0.2} ⇒ (1) : {”b”, 0.45}

2.3.4.2 ‘While’ loop

A ‘while’ loop has to be handled in a similar way as nested ‘if-then’ statements. Figure
2.21 illustrates the relationship from ‘while’ statements to nested ‘if-then’ statements.

The ‘while’ loop executes a code block (marked with (1.1)) as many times as the condition
is ‘true’. If the condition is ‘false’, the algorithm continues with the statement that follows
the ‘while’ loop.

If the condition is a fuzzy truth value which is neither ‘true’ nor ‘false’, both code blocks
have to be executed. Up to this point the situation is comparable to the use of ‘if-then’
statements. The main difference is that the second code block is not embedded into the
program flow, but defines the “usual way” the algorithm would have to continue after
the execution of the ‘while’ loop terminated. Thus, in case of an uncertain truth value it
might get executed before the ‘while’ loop has terminated.

In such a case, this parallel execution might be repeated in the next iteration of the loop.
If the condition is neither ‘true’ nor ‘false’, both code blocks are executed in parallel again.
Whereas this behavior is usually necessary for the inner code block of the loop, code block
(1.2) would not get executed a second time if a crisp ‘while’ loop were used.

The iterations continue as long as the condition is not absolutely ‘false’. If the inner code
block (1.1) is executed n times, the rest of the algorithm is also executed n times.

70 CHAPTER 2. FUZZY ARDEN SYNTAX

?

?

?

?
no

yes

(1.1)

(1.1)

(1.1)

(1.1)

(1.2)

(1.2)

(1.2)

(1.2)

Figure 2.21: Schema of a fuzzy ‘while’ loop

Example 24: (Execution of a fuzzy ‘while’ loop)

A small pseudo-code algorithm is used to illustrate this point. Assuming that
the ‘write’ command displays a text message on the screen:
i := 1;
while i = 0 fuzzified by 5 do

write "1: My degree of applicability is " || (true is present);
i := i+1;

enddo;
write "2: My degree of applicability is " || (true is present);

The output of this short algorithm would be:

1: My degree of applicability is 0.8
2: My degree of applicability is 0.2
1: My degree of applicability is 0.48
2: My degree of applicability is 0.32
1: My degree of applicability is 0.19
2: My degree of applicability is 0.29
1: My degree of applicability is 0.04
2: My degree of applicability is 0.15

Therefore, fuzzy conditional expressions as argument of ‘while’ loops should be used with
caution.

2.3.4.3 Concluding procedure

The result of an MLM usually is a message that is generated in the action slot. This
slot is executed when a ‘conclude’ statement whose condition yields ‘true’ is achieved.

2.3. DEFINITION OF THE EXTENSIONS 71

Using fuzzy truth values, the decision logic of an MLM might conclude neither ‘false’ nor
‘true’. Thus, ‘true’ or ‘false’ conclusions are only borderline cases of an extended range of
conclusions.

Furthermore, it is possible to execute more than one conclude statement with different
fuzzy truth values, for instance, within ‘if-then’ statements or loops. A single ‘conclude’
statement does only end the execution of the current program branch. If other code blocks
are still running, their execution is not ended (this functionality is realized by the new
‘terminate’ statement that is defined later).

Definition 16 (Conclude statement):

The conclude statement terminates the execution of the code block where
the conclude statement is used. Its form is:

conclude <expr>;

When a conclude statement is executed, the current sequence of statements is
terminated.

The expression <expr> defines the degree of truth by which the actual code
block makes a conclusion. It does not directly define whether the action slot
has to be executed, as more than one conclude statements may be executed.
The degree of presence of the truth value is equal to the conditional context.

If more than one conclude statement is reached during the execution of the logic
slot, every single one is executed, contributing to one overall conclude value.

The overall execution of the logic slot terminates only if

• all program branches are terminated by a conclude statement.

• the last statement of the logic slot is reached.

• the ‘terminate’ statement is used.

If the conclude statement is used without an argument or the argument is not
a fuzzy truth value, the default is ‘conclude F0.5’. If no conclude statement is
executed, the default conclusion is conclude F0.5.

As more than one conclude statement can be executed, an overall concluding truth value
has to be computed before executing the action slot.

Definition 17 (Concluding (truth) value):

The concluding truth value is a measure for the degree of truth of the
decision made in the logic slot. It can be any fuzzy truth value from ‘false’ to
‘true’ and is available in the action slot by using the keyword concluding.

The concluding value can be the result of one or more conclude statements in
the action slot. The overall value is the average of the single conclude values
weighted by their degree of presence. With C the set of all individual conclude
values of an logic slot; the result is computed by:

cavg :=
∑

c∈C cµ(c)∑
c∈C µ(c)

72 CHAPTER 2. FUZZY ARDEN SYNTAX

Example 25: (Concluding truth value)

These examples illustrate the use of single or multiple conclude statements.
The value of one single conclude statement that does not depend on any con-
dition is retained:

conclude statement cond. context truth value weighted addend

conclude true; 1.0 F1.0 1.0

overall concluding value: F1.0

Analogously, a single ‘false’ conclude statement is also retained:

conclude statement cond. context truth value weighted addend

conclude false; 1.0 F0.0 0.0

overall concluding value: F0.0

Multiple conclude statements are used as shown in the next examples.

conclude statement cond. context truth value weighted addend

if F0.5 then
conclude true; 0.5 F1.0 0.5

else
conclude false; 0.5 F0.0 0.0

endif;

overall concluding value: F0.5

If one ‘true’ and one ‘false’ conclude statement is executed and both are
weighted identically, the overall conclude value is neither ‘true’ nor ‘false’
(F0.5).

conclude statement cond. context truth value weighted addend

if F0.8 then
if F0.3 then

conclude true; 0.24 F1.0 0.24
else

conclude; 0.56 F0.5 0.28
endif;

else
conclude false; 0.2 F0.0 0.0

endif;

overall concluding value: F0.52

2.3. DEFINITION OF THE EXTENSIONS 73

The influence of the first condition on the “conclude true” is balanced by the
second one, which is more ‘false’ than ‘true’; therefore the ‘conclude true’ and
the ‘conclude false’ are almost annulled. In the next example, the neutrally
used conclude statement has been replaced by a ‘conclude false’ statement and
a final ‘conclude false’ has been added.

conclude statement cond. context truth value weighted addend

if F0.8 then
if F0.3 then

conclude true; 0.24 F1.0 0.24
else

conclude false; 0.56 F0.0 0.0
endif;

else
conclude false; 0.2 F0.0 0.0

endif;
...
conclude false; 1.0 F0.0 0.0

overall concluding value: F0.12

As the program flow continues after the execution of the if-then statement,
additional conclude statements may be executed as in the last example. In
this case, the additional ‘false’ reduces the overall conclusion by half (without,
an overall value of F0.24 would be achieved). If the first conclude statement
is also replaced by a ‘false’ conclude statement, the rule concludes absolutely
false:

conclude statement cond. context truth value weighted addend

if F0.8 then
if F0.3 then

conclude false; 0.24 F0.0 0.0
else

conclude false; 0.56 F0.0 0.0
endif;

else
conclude false; 0.2 F0.0 0.0

endif;

overall concluding value: F0.0

Because of the redefinitions, the execution of the logic slot has no longer to be terminated
immediately by a ‘conclude’ statement (if used within an ‘if-then’ statement, for instance).
Therefore, a new statement ‘terminate’ is defined to instantly terminate the decision logic.

74 CHAPTER 2. FUZZY ARDEN SYNTAX

Definition 18 (Terminate statement):

The terminate statement ends the execution in the logic slot. Its form is:

terminate <expr>;

The expression (<expr>) in the terminate statement defines the overall con-
cluding value that is not modified by any conclude statements, which may have
been executed earlier. No further execution in the logic slot occurs, regardless
of the expression. There may be more than one terminate statement in the
logic slot, but only one will be executed in a single run of the MLM. If the
expression does not return a fuzzy truth value, the default is ‘terminate F0.5’.
The action slot is executed independent of the terminate value.

Mainly, the newly defined ‘terminate’ statement equals in its functionality the old ‘con-
clude’ statement (except for executing the action slot even in the case of a ‘false’ conclu-
sion).

Example 26: (Instant termination of the logic slot)

logic:
...
/* check termination criterion */
...
if blood_glucose_level is less than or equal 180 fuzzified by 30 then

terminate false;
endif;
...
/* continue with MLM */
...

action:
if concluding is false then

write "The patient does not meet the requirements";
else

...
endif;

end:

One consequence of the extensions is the default execution of the action slot. Therefore the
slot must additionally check the overall concluding value and decide whether the action
slot should be executed or not. To achieve the usual behavior of the action slot, a simple
expression such as

if concluding = true then ... endif;

that embraces all other statements of the slot can be implemented. However, as the ability
to derive conclusions of different grades of truth is a sophisticated feature of the extensions,
it may be included in the message as in the next example.

2.4. LINGUISTIC VARIABLES 75

Example 27: (Integrating the concluding value into the message)

If needed the concluding value can be evaluated in the action slot, for example
by including it in the message of the MLM:

write "The current ophthalmic data of patient " || patientId ||
" is rated as suspicious by a degree of " || concluding || "."
" We suggest immediate intervention.";

For instance, the message could be like this41:

“The current ophthalmic data of patient 12345 is rated as suspicious
by a degree of 0.88. We suggest immediate intervention.”

The inclusion of the fuzzy truth value as number into the message has the
advantage that the “defuzzification” is left to the physician who might have a
wider overview of the current situation. Another way to include the degree of
truth of the conclusion would be to select one message from a set of different
messages:

msg := "The current ophthalmic data of patient " || patient_id ||
" is rated ";

if concluding is less than F0.5 then
msg := msg || " slightly suspicious. We suggest..."

elseif concluding is within F0.5 to F0.8 then
msg := msg || " suspicious. We suggest..."

elseif concluding is greater than F0.8 then
msg := msg || " very suspicious. We suggest..."

endif;

In this case one message could look like this:

“The current ophthalmic data of patient 12345 is rated very suspi-
cious. We suggest immediate intervention.”

The extensions defined in this section can be used to model vagueness by conditional
expressions and to process the resulting fuzzy truth values and data with a reduced degree
of presence by all Arden Syntax operators and statements.

2.4 Linguistic variables

As the second step of extending the syntax this section defines, in addition to the known
data-driven MLMs, a further new type of linguistic variable MLMs. The concept of lin-
guistic variables has been introduced in section 1.3.2. As linguistic variable MLMs define,
in contrast to data driven MLMs, a data structure rather than an algorithm, such MLMs

41It should be noted that the Arden Syntax does not specify how patient ids are referenced within an
MLM. The rules engine used for this work provides a constant labeled ‘patientId’ that represents the id of
the patient who is associated with the current event. In every case in which an event was defined entirely
independent of patients, it is either ‘null’ or may represent another important id. The extension of the
Arden Syntax by such an identifier is highly recommended and could be part of the curly braces fix.

76 CHAPTER 2. FUZZY ARDEN SYNTAX

do not need a logic or action slot. Instead, it is necessary to define all elements that spec-
ify a linguistic variable as shown in figure 2.22. To simplify the use of linguistic variables
in Arden Syntax, it is required that all terms in T (the set of valid terms) be generated
by the author; thus the set of syntactical rules G, which would create T , is not needed
separately. Instead, T is explicitly defined.

VL = {X, T, Ω, G, B}
‘sets’ slot
not used
‘range’ slot, ‘unit’ slot
‘values’ slot
‘mlmname’ slot

Figure 2.22: Representation of linguistic variable elements by an MLM

In contrast to the last extensions which largely concerned the functionality of the Arden
Syntax elements, these extensions affect the structure of the knowledge slot of an MLM.
The first two categories of an MLM are not modified. The name X of the variable is
identified by the name of the MLM. The knowledge category is redefined by the following
slots.

Type (coded, required) The type slot defines which slots are contained in the knowl-
edge category. A linguistic variable knowledge category is defined by the keyword
’linguistic variable’, which implies that the following slots exist: ‘values’, ‘input’,
‘defuzzification’, ‘range’, ‘unit’, ‘sets’. Some of these slots are optional.

Values (coded, required) A linguistic variable is defined by a set of linguistic terms.
The values slot defines these values as a list of Arden Syntax terms. For example,

values: ’decreased’, ’normal’, ’increased’;;

Input (structured, optional) The ‘input’ slot defines the data source for the linguistic
variable. Valid sources are data queries to the data base or references to other MLMs
that return a linguistic variable as a result of their action slot.

Defuzzification (coded, optional) This slot defines a defuzzification method that can
be used to compute a numerical value of the linguistic variables. So far, only two
methods—CoM and CoG—are supported.

Range (coded, required) The range slot defines the universe of discourse Ω as a range
of numerical values by Arden Syntax numbers as lower and upper delimiter. For
example,

range: 0, 100;;

Unit (coded, required) This slot defines the unit of the universe of discourse as an
Arden Syntax term. This information is only informal42.

Sets (coded, required) Each value of the linguistic variable is defined by a fuzzy set.
The sets slot contains all fuzzy set definitions.

2.4. LINGUISTIC VARIABLES 77

ω[giga/l]

µ(ω)

0.0

0.5

1.0

50 100 150 250 300 350 400 450 500 550

sign. dec. decreased normal increased sign. inc.

Figure 2.23: Linguistic variable ‘blood count, platelets’

As a first example, the linguistic variable ‘blood count, platelets’ that is defined in figure
2.23 is represented by an MLM in example 28.
The example comprises five values from ‘significantly decreased’ to ‘significantly increased’.
Their fuzzy sets are defined on a numerical universe of discourse in ‘giga/l’, the numerical
input value can be directly read from the data base by the read statement defined in
the ‘input’ slot. A defuzzification slot has not been defined, as this variable represents a
laboratory examination and is therefore used only as an input variable.

Example 28: (Linguistic variable ’blood count, platelets’)

maintenance:
title: Linguistic variable ’blood count, platelets’;;
mlmname: blood_count_platelets;;
arden: 1.2flv;;
version: 1.00;;
institution: Siemens Medical Solutions, University of Vienna

Medical School;;
author: Sven Tiffe;;
specialist: ;;
date: 2002-07-04;;
validation: testing;;

library:
purpose:

;;
explanation:

The fuzzy sets used in this MLM are based on the
definition of the concept ’blood count, platelets’
as used in the medical expert system CADIAG-II;;

keywords: ;;
citations: ;;

knowledge:
type: linguistic variable;;
values: ’significantly decreased’, ’decreased’, ’normal’, ’increased’,

’significantly increased’;;
input: read last { $BCPObservation, $Value

where (($Dkz = "B0829,N04") and
($patientId = %patientId)) };;

range: 0, 700;;
unit: ’giga/l’;;
sets:
’significantly decreased’ := linear((90,1.0), (110,0.0));
’decreased’ := linear((90,0.0), (110,1.0), (120, 1.0), (140, 0.0));
’normal’ := linear((120,0.0), (140,1.0), (350, 1.0), (380, 0.0));
’increased’ := linear((350,0.0), (380,1.0), (480, 1.0), (520, 0.0));
’significantly increased’ := linear((480, 0.0), (520, 1.0));;

end:

42In combination with an intelligent unit management system, this information could prevent incorrect
computations due to varying units within the data model.

78 CHAPTER 2. FUZZY ARDEN SYNTAX

2.4.1 Initialization of linguistic variable MLMs

A linguistic variable MLM can be used in other MLMs as a template (“data type”) for
individual instances of the linguistic variable. The template defines, for example, which
linguistic values can be assigned to the instance of the variable. The instance then repre-
sents individual values during runtime. This means that a linguistic variable MLM is not
directly executed, but merely provides the necessary information for using it.

2.4.1.1 Definition and initialization

As a linguistic variable is defined as an independent MLM, it first has to be referenced
before it can be used within the decision logic of another MLM. A linguistic variable is
usable as an input variable that has to be initialized by a numerical input value, or as an
output variable that does not have to be initialized as every value is separately assigned
to it.

Definition 19 (Linguistic variable statement, fuzzification):

The linguistic variable statement defines a reference to an MLM that has
to be of the ‘linguistic variable’ type. The reference can be assigned to a local
variable that represents an instance of the linguistic variable.

<var> := linguistic variable <term>
or

<var> := linguistic variable <term> from institution <string>

Optionally, the fuzzification of the variable can be done by initializing it either
manually, by defining a numerical input value using the keyword ‘with’, or
automatically, by evaluating the input slot of the linguistic variable MLM (if
defined). If the variable is not initialized, every value of the variable is set to
a degree of 0.0.

<var> := init linguistic variable <term>
or

<var> := init linguistic variable <term> with <numerical>
or

<var> := init linguistic variable <term> from institution <string>
or

<var> := init linguistic variable <term> from institution <string>
with <numerical>

2.4.1.2 Definition of data sources

The ‘input’ slot can either contain one read statement, as used in the data slot of common
MLMs, or one or more references to other MLMs. The read statement is defined without
using a local variable, as in example 28.

When other MLMs are referenced as data source it is necessary that they return, as the
result, a linguistic variable of the same type as the current one. The local values are then

2.4. LINGUISTIC VARIABLES 79

initialized by using the values of the returned linguistic variables. If one linguistic value
is present in more than one input variable, its highest degree is chosen.

Example 29: (Use of MLMs as data source for a linguistic variable)

A linguistic variable MLM ‘TEST LV’ defines in its input slot two references
to other MLMs.
input: /* the input values are read from every referenced MLM and

automatically aggregated to one input value */

mlm ’TOSCA_RULE_BLOCK_8’;
mlm ’TOSCA_RULE_BLOCK_7’;;

The referenced MLMs have to use the current linguistic variable as output
variable. Therefore, they have to reference the MLM that defines the variable
in their data slot without initializing it. In the logic slot, values are assigned
to the variable, which is then returned as result in the action slot.
data: test_lv := linguistic variable ’TEST_LV’;

...
logic: ...

let test_lv be ’increased’;
...

action: return test_lv;;

2.4.1.3 Definition of the fuzzy sets

Each value of a linguistic variable is defined by a fuzzy set or, more exactly, by a compat-
ibility function. The definition consists of a function type and a list of points (x, y) that
define the curve of the compatibility function in the form of:

’term’ := <type>((x1,y1), (x2,y2), ... , (xn, yn));

So far, only ’linear’ is a valid keyword for <type> and defines a parameterizable linear func-
tion on (x1, y1), . . . , (xn, yn). The degree of compatibility of a value ω ∈ Ω is determined
after detecting the relevant segment xi ≤ ω ≤ xi+1 by applying equation 2.8.

µ(ω) = yi+1 − (xi+1 − ω)(yi+1 − yi)
xi+1 − xi

(2.8)

The point with the smallest x-coordinate xl defines the degree of compatibility µ(xl) = yl

for all ω ≤ xl, the one with the greatest x-coordinate xr defines the degree of compatibility
µ(xr) = yr for all ω ≥ xr (figure 2.24 shows an example).

ω

µ(ω)

0.0

0.5

1.0

x1 x2 x3 x4 x5x6

Figure 2.24: Piecewise linear definition of a compatibility function

The main difference between this function type and the one used for fuzzified comparisons
(equations 1.11 to 1.13) is that the transition from ‘false’ to ‘true’ or vice versa can be

80 CHAPTER 2. FUZZY ARDEN SYNTAX

defined piecewise linear. The common s-, z-, or sz-functions can be also defined by using
the notation. The next example uses such functions to define three (abstract) values
‘decreased’, ‘normal’, and ‘increased’.

Example 30: (Definition of linguistic terms based on common compatibility functions)

A typical s-function is defined as

’decreased’ := linear((x1,1), (x2,0));

or

’decreased’ := linear((x_left,1), (x1,1), (x2,0), (x_right,0));

where ‘x left’ and ‘x right’ are the lower and upper delimiters of the universe
of discourse. Both definitions are equivalent; the additional specification of the
borders might result in more figurative definitions of the fuzzy set that might
be easier to comprehend.

Analogously, a typical z-function can be defined as:

’increased’ := linear((x1,0), (x2,1));

A typical sz-function can be defined as:

’normal’ := linear((x1,0), (x2,1), (x3,1), (x4,0));

2.4.2 Use of linguistic variables by common MLMs

Currently, linguistic variables can be used to be compared with linguistic values, to assign
such values to them, or be defuzzified. They cannot be directly used with arithmetic
operators or comparison operators. The common Arden Syntax operators behave as indi-
vidually defined for the use of invalid arguments.

2.4.2.1 Comparison of linguistic values

If a decision depends on the value of a linguistic variable, it has to be compared to a
constant term. Such a comparison can be done by the linguistic variable is comparison
operator that returns a fuzzy truth value.

Definition 20 (linguistic variable is comparison operator):

To compare an instance of a linguistic variable with a value t ∈ T of the
variable definition, the comparison operator ‘is’ is used:

<1:fuzzy> := <1:linguistic variable> is <1:term>

The operator returns the ‘degree of assignment’ of the term that is converted
to a fuzzy truth value.

This operator can be further used to extract one single value, for example for including it
into textual messages.

2.4. LINGUISTIC VARIABLES 81

Example 31: (Linguistic variables: use of comparisons)

This example uses the linguistic variable ‘blood count, platelets’, which is
defined in example 28.

data: platelets := linguistic variable ’blood_count_platelets’;
...

logic: sig_decreased := platelets is ’significantly decreased’;
decreased := platelets is ’decreased’;
normal := platelets is ’normal’;
increased := platelets is ’increased’;
sig_increased := platelets is ’significantly increased’;

msg := "The platelets blood count value of the current patient is"
|| "\n’significantly decreased’ by a degree of " || sig_increased
|| "\n’decreased’ by a degree of " || decreased
|| "\n’normal’ by a degree of " || normal
|| "\n’increased’ by a degree of " || increased
|| "\n’significantly decreased’ by a degree of " || sig_increased;

If the variable ‘platelets’ has not been initialized, the message would look like
this:

“The platelets blood count value of the current patient is
‘significantly decreased’ by a degree of 0.0
‘decreased’ by a degree of 0.0
‘normal’ by a degree of 0.0
‘increased’ by a degree of 0.0
‘significantly decreased’ by a degree of 0.0”

If the variable is initialized with a numerical value, for instance by

data: platelets := initialize linguistic variable ’blood_count_platelets’ with 250;

then the message would look like this:

“The platelets blood count value of the current patient is
‘significantly decreased’ by a degree of 0.0
‘decreased’ by a degree of 0.0
‘normal’ by a degree of 1.0
‘increased’ by a degree of 0.0
‘significantly decreased’ by a degree of 0.0”

In the next example, the input value for the variable is automatically retrieved
from the data base by executing the input slot, as no argument is passed along
with the initialization option:

data: platelets := initialize linguistic variable ’blood_count_platelets’;

If the query returned 360, the variable would be between normal and increased:

“The platelets blood count value of the current patient is
‘significantly decreased’ by a degree of 0.0
‘decreased’ by a degree of 0.0
‘normal’ by a degree of 0.67
‘increased’ by a degree of 0.33
‘significantly decreased’ by a degree of 0.0”

82 CHAPTER 2. FUZZY ARDEN SYNTAX

2.4.2.2 Assignments to linguistic variables

Like the assignment of values to common variables, it is possible to assign linguistic values
to linguistic variables. To emphasize the linguistic character of this variable type, the
linguistic representation of the assignment operator is used exclusively.

Definition 21 (Linguistic variable assignment statement, degree of assignment):

Like the common assignment statement, the linguistic variable assignment
statement places a value defined by a term into a local variable that has to be
a linguistic variable. If the variable has not been defined as a linguistic variable
in the data slot, then the local variable is set to null.

let <identifier> be <term>

Each value can be assigned by a degree from 0.0 to 1.0. A degree of assign-
ment of 0.0 means that the variable absolutely does not represent the value;
a degree of 1.0 means that the variable absolutely does. This degree is defined
by the conditional context in which the assignment is executed. If the same
value is assigned to one linguistic variable more than once, the highest degree
of assignment is chosen.

The degree of assignment can additionally be modified by an optional numerical
argument from 0.0 to 1.0.

let <identifier> be <term> with <number>

If the modifier is used, then the degree of assignment is the result of the mul-
tiplication of the current conditional context with the modifier.

By using the comparison operator and the assignment statement, fuzzy control rules can
be easily implemented by Fuzzy Arden.

Example 32: (Linguistic variables: use of assignments)

The dose for regular insulin medication depends on the blood glucose level
of the patient. Four rules are defined for the calculation of the dosage, pro-
vided that 4 international units regular insulin reduce the blood glucose level
approximately by 100 mg/dl [H+89]. To implement them, two linguistic vari-
ables ‘blood glucose level’ and ‘insulin dose’ are defined and used as follows:

if if blood_glucose_level is ‘slightly increased’ then
let insulin_dose be ’none’; /* 0 IU */

elseif blood_glucose_level is ‘increased’ then
let insulin_dose be ’low’; /* 4 IU */

if blood_glucose_level is ‘significantly increased’ then
let insulin_dose be ’medium’; /* 8 IU */

else
let insulin_dose be ’high’; /* 12 IU */

endif;

The terms of the variable ‘blood glucose level’ could be defined as follows:

2.4. LINGUISTIC VARIABLES 83

’slightly increased’ := linear((225,1.0), (275,0.0));
’increased’ := linear((225,0.0), (275,1.0), (325,1.0), (375,0.0));
’significantly increased’ := linear((325,0.0), (375,1.0), (425,1.0), (475,0.0));
’absolutely increased’ := linear((425,0.0), (475,1.0));

The terms of the result variable could be defined by simple triangles:

’none’ := linear((0,1.0), (4,0.0));
’low’ := linear((0,0.0), (4,1.0), (0,0.0));
’medium’ := linear((4,0.0), (8,1.0), (12,0.0));
’high’ := linear((8,0.0), (12,1.0), (16,0.0));

If the blood glucose level would be 250 mg/dl, the first condition would yield
F0.5, as would the second one too. Thus, the linguistic variable ‘insulin dose’
would be set to ‘0IU’ by a degree of 0.5 and by the same degree to ‘4IU’43.

2.4.2.3 Textual representation and defuzzification of linguistic variables

If linguistic variables are used to compute the result of rules, it is necessary to output the
result in an appropriate way.

As mentioned earlier, it is possible to extract individual values of the variable by using
the ‘is’ comparison operator. The operator returns the degree by which the value was
assigned, which can then be included, for instance, in a textual message.

When linguistic variables are used by the string concatenation operator (or, analogously,
by the ‘to string’ operator) it is converted into a textual representation that provides the
name of the variable and each value with the corresponding degree of assignment. Like the
representation of ‘duration’ data types, the textual representation is institution specific
and may vary.

In cases where a numerical value is required, for example to dose a medication, the variable
can be defuzzified using the ‘defuzzify’ operator.

Definition 22 (Defuzzify operator):

The defuzzify operator returns a numerical value based on the defuzzification
of the current linguistic values of a linguistic variable. Its form is:

<numerical> := defuzzify <identifier>;

The mathematical defuzzification is defined by the respective slot of the linguis-
tic variable MLM.

CoM := y =
∑

i xiµ(xi)∑
i µ(xi)

; x : average of plateaus

CoG := y =

∫
y∈Y yµ(x1, . . . xn)(y)dy∫
y∈Y µ(x1, . . . xn)(y)dy

43This example is kept simple for easy comprehension; it shows a linear correlation between the condition
and the result. In practice, more complex systems behave in a non-linear fashion and therefore benefit
from the underlying fuzzy sets more than the presented one (and, in practice, high blood glucose would
probably be treated differently).

Chapter 3

Application of methods

This chapter presents three projects that make use of the extensions presented in the
last chapter. The extensions have been implemented by a Java-based software and were
evaluated in two clinical projects.

3.1 Design and implementation of the rules engine

To test Fuzzy Arden in terms of realizability and applicability, a software named “rules
engine” was developed. It provides a runtime environment for Arden Syntax rules. This
rules engine is a modular autonomous service which was connected to a separate informa-
tion system (IS) and supports nearly all elements of Arden Syntax to be used for writing
MLMs as specified in [Hls99], and all the extensions defined in this work. The rules engine
was implemented using Java44 1.3, an object-oriented programming language. The devel-
opment and verification of the rules engine took about 18 months, starting in the summer
of 2000.

The engine is started within a Tomcat servlet-server45. Tomcat is an open-source appli-
cation server based on Java technology, which serves Java servlets and Java Server Pages
(JSP). Servlets are Java classes which are dynamically compiled during runtime by the
Tomcat server; JSPs are a hybrid of HTML files and Java code, which is also compiled
dynamically. The Tomcat server can be used as a stand-alone or in combination with
a pure web server, such as Apache, which serves static web pages. For this project the
server is used as a stand-alone and starts the rules engine as a separate thread. Further,
it provides administrational user interfaces based on HTML and Java servlets.

The basic behavior of the rules engine is to wait for events that occur in the IS and to run
those MLMs which were written to react to the events that occurred. Figure 3.1 illustrates
the connections between rules engine and IS.

The communication between rules engine and users or the reaction to events or data
provided by devices has to be handled by the IS. For this work, the rules engine has
been connected to the Siemens MedStage46 communication platform that provides all
functionalities for data storage, communication, and security. As the engine was designed
independent of any specific information system and the architecture of the engine was
designed in a modular way, only a small part of it was implemented IS-specific, by writing

44http://java.sun.com
45http://jakarta.apache.org/tomcat/
46http://www.medstage.com

84

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 85

users/devicesinformation systemrules engine

events

queries

messages

?

us
er

 in
te

rf
ac

e

data base

message server

Figure 3.1: Communication between information system and rules engine

interfaces that communicate with the MedStage system. Basically the rules engine is
connected to the IS by three interfaces. First, it listens to events that occur in the IS.
Next, the MLMs that are executed within the rules engine can access the data base by
sending queries to the IS. Finally, the results of the rules can be sent to the message server
of the IS, which distributes incoming messages to their receivers.

The interfaces of the rules engine only define the type of functionality in terms of commu-
nication, whereas the functionality itself is provided by the institution-specific implemen-
tations of the interfaces. The current implementation partly uses MedStage libraries for
a secure and reliable communication with the IS. The message system used for communi-
cating events is based on Java Message Service (JMS) technology. If the rules engine has
to be connected to a different IS, only this set of interface implementations would have to
be rewritten.

In the following, some aspects of the implementation will be presented in detail, starting
with the Java representation of Medical Logic Modules.

3.1.1 Java class model

The rules engine is designed to dynamically load, unload, and reload MLMs. To load a
module from its textual representation, the content of the file has to be read by a compiler
that produces a set of linked Java objects which represent single elements of the MLM and
which form an ‘object tree’ that represents the entire MLM. This object tree is based on
a class model that comprises all classes needed to represent and to execute Arden Syntax
MLMs47.

Classes can be grouped by packages, for example if they are functionally related. Figure
3.2 shows the hierarchy of the packages used to manage the classes of the rules engine.
Packages can be nested; therefore the package ‘arden’ contains all other packages as top-
level package.

The package hierarchy starts with three main packages, namely ‘engine’, ‘parser’, and
‘mlm’. The first contains those classes that provide the environment to execute Arden

47A class represents a data type that can be interpreted as a template that includes data structures
(attributes) and program functions (methods), for instance to access and alter attributes of a class.
During runtime, individual objects (instances) of a class can be created. An introduction to object-
oriented thinking can be found in the introduction to “Thinking in Java” [Eck00] (also available online at
http://www.mindview.net/Books/TIJ/).

86 CHAPTER 3. APPLICATION OF METHODS

arden

engine

event

web

parser

v2

v2f

v2flv

mlm

elements

datatypes internal

operators

aggregation

where

statements

slotstructures

...

medstage

IS dependent

IS independent

Figure 3.2: Package diagram of the class model

Syntax MLMs, such as interfaces to data base access, the event system, or some features
of the web-based user interface. Additionally, it includes the only IS-dependent classes
that implement specific parts of the communication interfaces.

The package ‘parser’ contains a set of parsers for translating the ASCII text representation
of an MLM into Java. A parser is a program that analyzes the syntax of an input file,
which usually is text-based. The parsers used to translate MLMs are based on the BNF
of the Arden Syntax specification and use lexers that pre-process the MLMs transforming
the textual representation into a sequence of logical syntactical tokens.

The main ‘parser’ package contains those parsers that read the constant parts of an MLM,
which are largely independent of the applied version of Arden Syntax (all elements of
the ‘maintenance’ and ‘library’ categories). Based on the value of the ‘version’ slot in
the ‘maintenance’ category, the parser of the corresponding sub-package is chosen. This
separation of the parsers and this structure of the packages provides extreme flexibility in
integrating new versions of Arden Syntax on the syntactical level. New parsers have only
to be defined within a package whose label equals the version of Arden Syntax that has to
be parsed. Two new parser versions (‘2f’ including fuzzy extensions and ‘2flv’ including
linguistic variables) which are able to process the current extensions are defined. The
parsing process is described in detail later.

The last package ‘mlm’ contains all classes needed to represent any Arden Syntax MLM
by a Java object tree. The base package contains classes that represent the basic structure
of an MLM, such as the categories, or the different types of slots. The ‘slotstructures’
package provides classes for representing those slots, which are structures but do not
include algorithms, such as the ‘sets’ slot of linguistic variables. The ‘links’ slot of the
library category is another example of such slots, however all slots of this category are
stored as plain text.

The ‘elements’ package models those Arden Syntax structured slots that contain algo-
rithms and contains hierarchic sub-packages according to the structure of the specifica-
tion. Basically, three categories of elements have been identified: data types, such as

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 87

‘Boolean’ or ‘number’, operators, and statements. Operators are additionally ordered by
sub-packages that correspond to their category in the specification document.

The entire class structure is not described in detail. Two aspects of the class model,
concerning the representation of an MLM, are explained next. Figure 3.3 shows an outtake
of the class structure as simplified UML48 class diagram. The diagram only shows selected
attributes and methods of the presented classes.

ArdenCategory

+toXML(buf: StringBuffer): void

#validateData(slots: HashMap): void

+getName(): String

ArdenMaintenanceCategory

#title_slot: ArdenTextualSlot

#mlmname_slot: ArdenCodedSlot

#arden_version_slot: ArdenTextualSlot

#version_slot: ArdenTextualSlot

#institution_slot: ArdenTextualSlot

#author_slot: ArdenTextualSlot

#specialist_slot: ArdenTextualSlot

#date_slot: ArdenCodedSlot

#validation_slot: ArdenCodedSlot

ArdenLibraryCategory

#purpose_slot: ArdenTextualSlot

#explanation_slot: ArdenTextualSlot

#keywords_slot: ArdenTextualSlot

#citatons_Slot: ArdenTextualSlot

#links_slot: ArdenTextualSlot

ArdenMLM

#engine: ArdenEngine

#eventDefinitions: Vector

#source_path: String

+execute(env: RuntimeEnvironment): void

+event(env: RuntimeEnvironment): void

+toXML(): String

ArdenSlot

#name: String

ArdenTextualSlot

#contents: String

ArdenDataSlot

ArdenCodedSlot

#contents: Object

ArdenStructuredSlot

+firstStatement: ArdenStatement

ArdenKnowledgeCategory

#slots: HashMap

#dataSlotCollections: HashMap

#dataSlotEventStructures: Vector

#eventMappings: Vector

maintenance

library

knowledge

Figure 3.3: Java class structure of an MLM

On the right side of the diagram, the class ‘ArdenMLM’ represents one MLM as a top-
level root object of the object tree. Every MLM representation which is loaded into the
engine is referenced by exactly one instance of this class. Despite to some information
required during run-time it contains references to three objects, which represent the three
categories that belong to an MLM. Each category object references a set of slots that are
objects of one of the three possible slot classes.

All category types share certain properties which have been defined in the abstract ‘Ar-
denCategory’ class49. Each category type is represented by an own class that inherits the
properties of the abstract category class. Classes that inherit other ones are also termed
child classes and are marked by the arrow symbol in the diagram. Objects that repre-

48Unified Meta Language, modeling technique used for “Object Oriented Analysis and Design”.
49Unlike normal classes, abstract classes cannot be directly used to create objects of this type. They may

be used to define attributes and methods which are then used by classes that inherit this one. Further,
abstract classes may contain abstract methods that define the name and the data types of arguments
and results, but not the algorithm of the method that has to be implemented by inheriting, non-abstract
classes.

88 CHAPTER 3. APPLICATION OF METHODS

sent textual slots (‘ArdenTextualSlot’) simply contain their value as String. Coded slots
(‘ArdenCodedSlot’) may reference any kind of structured information using the ‘Object’
class, which is the top-level class for all Java classes. For instance, entries of the ‘links’
slot could be represented as a sequence of objects by one Java ‘Vector’ object. Structured
slots (‘ArdenStructuredSlot’) contain expressions and statements referenced by one object
that represents the slot’s first statement.

The ‘maintenance’ and ‘library’ categories contain a fixed set of slots50. The knowledge
category was designed to contain a dynamic set of slots to match both, the requirements of
classic Arden Syntax MLMs and those of linguistic variable MLMs, which are significantly
different.

As the structured content of the ‘data’, ‘logic’, and ‘action’ slot is referenced only by the
first statement, statements have to create a sequence by referencing their successor. (For
technical reasons, the previous statement is also referenced.) Further, statements have to
reference the expressions that are used to create or alter the data. An outtake of the class
diagram for statements and operators is shown in figure 3.4.

Analogous to the model of the categories, one abstract class defines some basic attributes
and methods of a statement. (In the diagram—which however is incomplete—only two
attributes and three methods are shown.) The attributes are used to create the sequence
of statements by referencing the previous and following one, the methods include func-
tionalities to execute the statements. Further, some abstract methods which have to be
implemented by the child classes are defined. The most important one is the ‘eval’ method
which is used to execute an MLM and will be described in detail later. Further, every
child has to provide a method to represent itself as XML text.

Every Arden Syntax statement is represented by one class. As an example, the diagram
shows three of them that inherit the abstract statement class (‘ArdenAssignment’, ‘Ar-
denIfThen’, and ‘ArdenWrite’) representing the common structure of these statements
classes.

The assignment includes one variable identifier object of the class ‘Identifier’ and the ex-
pression that represents the value, which has to be assigned to the variable. The expression
itself can also be an object tree; only the “root” is referenced directly. An identifier can
either be a single identifier or a group of identifiers (for example, assigning data by the
‘argument’ operator).

Analogously, the ‘if-then’ statement references an expression that represents the condition
and two statements that represent the corresponding first statement of the two alterna-
tive code blocks that might be executed. The ‘write’ statement references an expression
that represents a value to be written to a destination, which is represented by a variable
(referenced by an identifier).

More exactly, as concrete data values are only available during the execution of an MLM,
references to expressions represent only combinations of variables, constants, and/or op-
erators that yield one concrete data value after the execution. Such combinations are
represented by an object tree that uses child classes of the abstract root class ‘Arden-
Structure’, which defines some basic functionalities, such as the evaluation method and
the XML-export method, which have been mentioned in the context of statements.

Constants can be of any Arden Syntax data type, each represented by an individual class.
They all share their attributes ‘primary time’ and ‘degree of presence’, which are defined

50As for the current use of the rules engine, the coded information of the ‘library’ slots were not required,
they are handled like textual slots.

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 89

ArdenStatement

#nextStatement: ArdenStatement

#prevStatement: ArdenStatement

+eval(env: RuntimeEnvironment): void

+toXMLbuf(buf: StringBuffer): void

+evalNext(env: RuntimeEnvironment): void

ArdenIfThen

#condition: ArdenStructure

#ifBlock: ArdenStatement

#elseBlock: ArdenStatement

ArdenWrite

#value: ArdenStructure

#destination: Identifier

ArdenAssignment

#identifier: Identifier

#becomes: ArdenStructure

arden.engine.RuntimeEnvironment

#event: ArdenEvent

#eventtime: ArdenTime

#triggertime: ArdenTime

+mlm: ArdenMLM

#executionState: int

#mlmAarguments: ArrayList

#mlmResult: ArrayList

ArdenStructure

+eval(env: RuntimeEnvironment): ArdenData

+toXML(buf: StringBuffer): void

ArdenData

#primary_time: ArdenTime

#presence: double = 1.00

+getPrimaryTime(): ArdenTime

+getDegreeOfPresence(): double

Identifier

#id: String

#group: Vector

ArdenTime

+date: GregorianCalendar

+ArdenTime(isodatetime: String)

+ArdenTime(sqlDate: java.sql.Date): void

+ArdenTime(millies: long)

ArdenList

#items_struct: ArdenStructure

#items_evaluated: Vector

UnaryOperator

#left: ArdenStructure

#xmlOperatorName: String = "N/A"

#xmlOperatorAlignment: int

BinaryOperator

#right: ArdenStructure

#xmlOperatorName2: String = "N/A"

TernaryOperator

#middle: ArdenStructure

ArdenTruth

#value: double

Figure 3.4: Java class structure of statements and operators (outtake)

in the abstract class ‘ArdenData’. Constants have no primary time; however, the data
type classes are also used to represent dynamic data during the execution of an MLM.
As an example, the diagram shows three data type classes for representing truth values
(‘ArdenTruth’), lists (‘ArdenList’), and time values (‘ArdenTime’).

Operators can be of unary, binary, or ternary type and reference one to three expressions.
Every single operator is implemented by a Java class that inherits one of these abstract
operator base classes.

In summary, the Java representation of an MLM can be interpreted as an object tree with
an ‘ArdenMLM’ object as the root. Every class that is relevant for the execution of the
MLM provides an ‘eval’ method that has to provide all functionality of the element. For
instance, the evaluation method of the binary logical operator ‘or’ knows how to combine
two or more truth values and the ternary comparison operator ‘is within to’ knows which
types of data can be compared and how the comparison should work.

90 CHAPTER 3. APPLICATION OF METHODS

3.1.2 Runtime processes

The MLM ASCII files are compiled by parsers to Java objects, which are based on the
class library shown before. All MLMs are loaded during startup of the engine from defined
folders in the file system. For this work, other sources, such as databases were not needed
but can be easily added, as the parsers only require a stream of characters as input source.

Strictly speaking, the parsers are composed of two elements. A ‘lexer’ processes a stream
of characters and divides it into a stream of logical tokens. A ‘parser’ uses this stream of
tokens as input and validates the stream of tokens in means of syntactical correctness. In
parallel, the parser creates the Java object tree as result.

In this document, the lexer and parser are referred to as a single unit by using the term
parser. All parsers used in this work are based on JLex51 as lexer and Jay52 as parser
definition tool. These tools use formal description files as input and create Java classes
that represent the corresponding lexer and parser.

The parser had to be able to validate different versions of Arden Syntax that use different
syntactical rules—Version 2, the fuzzified version that includes the main fuzzy operators,
and finally the version that includes the concept of linguistic variables. To keep the parsing
process flexible and easily extendable, each version of MLMs is parsed by an own parser.
On the other hand, the first two categories of MLMs are mainly constant over the different
versions; therefore the parsers have been separated into two parts.

The first part processes the maintenance and library categories and creates a Java object
tree with the MLM object and the first two category objects. The entire knowledge
category is separately kept as plain text. Then, the value of the ‘Arden’ slot that defines
the Arden Syntax version of the MLM is evaluated and, depending on this value, another
parser that compiled the knowledge category is called53. All parser classes have the same
name but are located in different Java packages54. For instance, the knowledge category
sub-parser for Arden Syntax version 2.0 is located in package ‘arden.parser.v2’ whereas
the one for the fuzzified version is located in package ‘arden.parser.v2f’. Version 2 MLMs
define the value “2” in the arden-slot, the fuzzy ones define “2f”. The correct class is then
referenced by using the Java reflection technology that can be used to dynamically locate
the correct class, based on its fully qualified class name (that is, package name plus class
name).

The parser ignores all contents within curly braces. These mappings are parsed separately
during the initialization of the MLMs by the rules engine. This process is done when
each MLM object is added to the knowledge base subsystem. Parsing the mappings is
either done by the classes that use the mappings, such as destination statements or event
statements, or in case of read statements by a separate parser, as the syntax is rather
complex. If the initialization ends without errors, the knowledge base subsystem can be
used to easily find, remove, or update single MLM objects55.

51http://www.cs.princeton.edu/˜appel/modern/java/JLex/
52http://www.informatik.uni-osnabrueck.de/bernd/jay/
53Arden Syntax version 1 MLMs do not define the version slot and this version is not supported. However,

the differences between version 1 and version 2 are marginal, older MLMs are therefore parsed as version
2 MLMs. As the support of such MLMs is not the scope of this engine, this method has not been tested
further.

54Each class name must be unique within one package.
55The addition of new MLMs can only achieved by restarting the engine, as this feature was not needed

for the evaluation of the methods. As the methods for adding and removing MLMs from the knowledge
base are implemented, this feature would just require a suitable user interface.

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 91

3.1.2.1 Event preparation and MLM call

In general, the evocation of an MLM is initialized by an event. Each MLM defines one or
more events in the data slot by event mappings that are assigned to local variables. These
variables can then be used in the evoke slot to define evocation conditions.

Event-related processes are illustrated in figure 3.5. An information system broadcasts
events that are received by the rules engine and can be optionally sent to a scheduler
for delayed MLM execution. The communication layer is not restricted to a specific
technology, as the rules engine can use more than one event interface. Currently the Java
Message Service56 (JMS) is used as the communication method.

send

scheduled event

receive scheduled

event

lookup MLMs

that define event

in data slot that defined scheduled event

directly evoke MLM

execute MLM

listener

broadcast

event

register as

to scheduler

send scheduled events

scheduled event

receivereceive event

ru
le

s
en

gi
ne

jms event interface

in
fo

rm
at

io
n

sy
st

em

sc
he

du
le

r

jms

evaluate evoke slot

create (set of) scheduled event(s)

Figure 3.5: Receiving and scheduled events

The JMS can be used to communicate between two specific systems (point to point) or to
broadcast from one system to an undefined number of listeners (publish/subscribe). As
more than one system may be interested in being notified of events, the latter method
is used. An event is sent to a specific channel (‘topic’) to which listeners, such as the
rules engine, have to register initially. From then on, whenever a message is sent to this
particular topic, the JMS interface will be notified and will receive the message. This
interface and the structure of an event is described later.

Events can be sent by every system that is connected to the JMS topic. For example,
an information system can create and fire an event by data base triggers if new data
is available. In the current implementation, Java event objects that are defined by the
MedStage system are created57 and sent to the topic used by the rules engine. This Java
object includes information about the origin of the event, a time-stamp and, optionally,
further information.

The engine is notified by the interface and looks into the knowledge base for those MLMs
which define the received event in the data slot. After the MLMs have been selected, the
evoke slots which yield either ‘true’, ‘false’, or a set of Arden Time objects are executed.
If the evoke slot yields ‘true’, then the particular MLM is executed instantly. If the slot

56http://java.sun.com/products/jms/
57Therefore, the JMS interface that translates IS-specific events to events that can be processed by the

rules engine is an institution-specific part of the rules engine.

92 CHAPTER 3. APPLICATION OF METHODS

yields ‘false’, then the MLM is not executed. If one or more time-stamps are returned by
the evoke slot, the MLM has to be executed later. The task to schedule such events is
left to a separate external scheduler. The events are capsuled within a special message
type that is sent directly to the scheduler using the JMS. The scheduler fires the events at
the time defined by the time-stamps and sends them directly as scheduled events to the
engine. Then the particular MLM is evoked directly.

This evocation process results in an asynchronous execution of MLMs. The duration be-
tween the action that caused an event and the execution of the associated MLMs depends
on various factors, such as the communication of the event and the current load of the
engine. Further, events are sent from the information system to an unknown number of
receivers and the process that caused the event is continued immediately. A synchronous
reaction to an event, for example when prescribed drugs have to be checked for incompat-
ibilities by an MLM and the prescription has to be interrupted in the event of a positive
result, is realized differently, for example without using the event system. This mechanism
will be described later.

Regardless of whether an MLM is evoked instantly or delayed, each MLM execution is
made within an own thread. This ensures that, in the event of execution errors, the rules
engine keeps running. During the initialization of a new MLM execution process the system
creates a runtime environment that is used by the execution instance to communicate with
the rules engine; each environment provides its own variable space.

3.1.2.2 Runtime environment

The functionality of each statement and operator is defined, as mentioned before, in one
method that each such class has to implement. The evaluation methods

public abstract void eval(RuntimeEnvironment env) throws ArdenRuntimeException;

and

public abstract ArdenData eval(RuntimeEnvironment env) throws ArdenRuntimeException;

are defined in the abstract classes of statements and operators and use a runtime envi-
ronment object as argument. If any error that occurs during the execution of the MLM
cannot be handled according to the specification of the current statement or operator, an
exception is thrown; the exception interrupts the evaluation of the MLM and provides
textual information about the error.

The runtime environment manages all information needed for one individual execution of
the MLM, such as the values of local variables. Further, as the elements of the MLM
object tree do not have any reference to the rules engine, the runtime environment is used
as a link to the functionalities of the rules engine, providing all communication interfaces
to the elements.

Whenever an MLM is executed, a new instance of the runtime environment is created and
passed to the evaluation method of the first statement of the active slot. This statement
calls the evaluation method of its expression (for instance, an operator, an identifier, or a
data constant) that returns an object of the ‘ArdenData’ type.

The result of the expression is used within the evaluation method of the current statement
as defined in the specification. For example, it might be assigned to a local variable or it

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 93

might be used to select the code block of an if-then statement that has to be executed next.
When the current statement has completed its own execution, the next one is evaluated
by calling its evaluation method. The current runtime environment is passed as argument.
This continues until the last statement is reached or an error occurs, as mentioned earlier.

If a data value has to be stored in a variable, its identifier and the value is passed to the
runtime environment that stores both information. Whenever the evaluation method of
an ‘Identifier’ object is executed, which represents a variable during the execution, it calls
the runtime environment and passes its own label as argument to receive the current value
of the variable. This value is simply the result of the evaluation method and is returned
to the expression (or statement) that used this ‘Identifier’ object as argument.

Therefore, each MLM is represented exactly by one Java object tree during runtime, which
is used by multiple execution processes of one MLM. Yet, each execution process has an
individual runtime environment that guarantees the separation of its own data from the
data of other execution processes.

3.1.3 Design of the interfaces

The execution of Medical Logic Modules is controlled by the Arden Syntax Java class
library described earlier. During run-time, these elements of the MLM representations
may need interfaces to the information system that embeds the rules engine, for example
to read data from the data-base or to send messages. This section describes some design
aspects of such interfaces.

Figure 3.6 shows the schematic architecture of the rules engine. The communication to
external software and systems is done via four interfaces, which are easily extendable.
Each interface can be implemented by one or more modules with different features, for
example to use different message transportation systems. So far, only interface features
that were needed to evaluate the Fuzzy Arden concepts have been implemented.

message interface

da
ta

 b
as

e
in

te
rf

ac
enative interface

...

...

asynchronous events

read/write access

e−mail

xml/xslt transformation

synchronous evocation

direct evocation

web administration

java calls

event interface

httpjms

jmshttpsmpt

Figure 3.6: Architecture of the rules engine

94 CHAPTER 3. APPLICATION OF METHODS

An event interface receives asynchronous events and schedules events as described earlier.
The data base interface provides methods to read and write to the data base. The message
interface allows messages to be sent to recipients, using different transport protocols. The
native interface provides methods for direct access to MLMs and functions of the rules
engine. Further, it provides an internal interface to directly call Java methods from MLMs.

Every interface is defined by a set of methods using the Java interface technique. A Java
interface defines a set of methods which have to be realized by a class that implements this
interface. Therefore, all program interfaces between the core system and the interfaces
are constant while the implementation of the interface functionality can be easily altered.
More than one interface implementation can be used side by side, as shown in the figure.

All properties of the interfaces, such as the mail host for sending e-mails or the JMS host
for the event system, are controlled by a property file that is loaded by the engine during
startup.

3.1.3.1 Event interface

The first interface is used to receive events that initialize the evocation process of the
MLMs, as described in section 3.1.2.1. Actually, two types of event transportation layers
are supported by two implementations of the interface: the Java Message Service (JMS)
and HTTP. Both implementations can receive XML-coded events. Additionally, as JMS
supports sending and receiving Java objects, events can be received and sent as native
Java objects by the JMS interface.

An event, whether it is represented by a Java object or is XML coded, consists of the
following information:

name: The name of the event is a unique identifier that can be used to define unambiguous
references to the event, for example within the event mapping in MLMs.

event time: This time stamp defines the moment when the event was created and fired.
This time need not be identical with the time of the action that caused the event,
such as a data base operation that triggered the event or an order entry that caused
the data base operation.

user/system id: Events provide information about the originating system and the user
whose action might have caused the event. This information can be used, for exam-
ple, to log actions of the system, to provide additional information when explaining
actions of the decision support system, or to identify the user who caused the event
as a message receiver.

patient id: Each event is associated with a patient id. Usually, any type of changes
in the patient data base are somehow related to an individual patient. The Arden
Syntax specification does not define how a patient associated with a given event (and
therefore with the individual execution of an MLM) has to be referenced. As an
extension, the engine supports the keyword ‘patientId’ as an Arden Syntax constant
that represents this value during the individual execution of the MLM.

additional data: Every event can be used to transport additional data represented by
keys/value pairs. The data is automatically mapped to Arden Syntax data types.

Such events are received asynchronously to the actions that caused them; thus processes
in the origin system may have continued since the broadcast of the event. Synchronous
“events” are supported by the native interface which will be described later.

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 95

3.1.3.2 Data base interface

The second interface is used to communicate with the information system to query data
from the data base. The rules engine defines an SQL-like language that additionally can
use Arden Syntax variables within the queries. For performance reasons it is possible
to use constraining expressions—temporal restrictions for instance—within the queries
instead of using the corresponding native Arden Syntax operators.

Example 33: (Read statements: SQL-like query)

prepared_time := now - 6 hours;
(sys, dia) := read {

$BPObservation, ($Systole, $Diastole)
where (($observationTime > %prepared_time)

and
($patientId = %patientId))};

As shown in the example, local variables have first to be assigned before they can be used
within the queries, where they are identified by a leading percent character. Data base
tables and columns are identified by a leading dollar character. More than one query can
be defined within one read statement to assure that the queries are processed within one
data base transaction. Each column that is referenced by the queries is mapped to one
local variable. The primary time is assigned automatically by individual mappings that
define for every data base table one column whose value has to be used as primary time.
These mappings can be added and removed dynamically. If for a data base query no
primary time mapping is defined, the primary time of the data is set to ‘null’.

Alternatively, data can be directly transported by events as key/value pairs. They can be
accessed by appending the key to the keyword ‘event’ using a dot notation. Further, the
primary time of the data value is defined by an additional key and has to be transported
in the event too. The reason for creating this transport method was to keep the commu-
nication overhead as small as possible when only a few bytes have to be transported.

Example 34: (Read statements: data transported by an event)

(sys, dia) := read { %event.sysBP:observationTime%;
%event.diaBP:observationTime% };

3.1.3.3 Message interface

The Arden Syntax does not specify the definition of message destinations. Like the defini-
tion of events or data base queries, destinations are defined in an institution-specific way
by mappings58. The presented engine basically defines destinations by a message type and
the destination, separating these two units of information by a colon:

destination{ type:dest }

The message type defines the form and the transport layer by which the message has to
be delivered. Therefore, the value and syntax of ‘dest’ directly depends on the message
type. So far, the following message types are supported:

58The HL7 Arden Syntax SIG defined a new ‘structured message’ format that includes both the message
content and information about the destination. However, this format is not supported yet.

96 CHAPTER 3. APPLICATION OF METHODS

file: The keyword ‘file’ defines the message to be written as plain text into a file. The
filename is defined by the value of ‘dest’ and can contain ‘patientid’ as a keyword,
which will be replaced by the current patient id.

console: Debug messages can be directly printed on the console in which the rules engine
has been started. Three different priority levels, namely ‘debug’, ‘log’, and ‘error’,
can be defined; these may be automatically filtered out according to the current
run-time settings of the rules engine.

jms: Messages can be sent using the JMS point-to-point communication. The receiver is
defined by ‘dest’ which represents one specific message queue.

mailto: Plain text messages can be sent via e-mail to one specific receiver. The e-mail
address is defined by the value of ‘dest’.

xmlmailto: If the message content is pure XML, it can be sent by e-mails with their
MIME type set to “text/xml”. E-mail clients that are able to handle XML mails
can process the content or display it using a web browser.

xml2html mailto: XML coded messages may be converted into HTML by using XSLT
style sheets. The value of ‘dest’ defines both the e-mail address of the receiver and
the URL of the XSLT style sheet that has to be used to convert the XML file into
HTML. The e-mail is then sent with MIME type set to “text/html” which can be
directly displayed by an e-mail client that supports HTML.

The e-mail destinations can only be used for direct communication, as they have not been
extended to support roles yet. The transmission of a message to an unknown receiver who
is identified by a rule, such as “head nurse”, could be realized either by using an explicit
message server that covers all communication aspects or even by using JMS message
queues.

3.1.3.4 Native interface

The native interface provides different methods for direct communication between the rules
engine, the MLMs, and the embedding environment. Communication with other software
is basically achieved by servlets or JSPs that receive requests and return the results. Such
servlets and JSPs are used for the administration of the rules engine as well as to directly
evoke MLMs to realize synchronous events.

Synchronous events (direct evocation)
Usually, MLMs are evoked indirectly by events. For the direct evocation, a special servlet
receives the name and institution of the desired MLM by an HTTP request. Optionally,
arguments that will be passed to the MLM can also be defined. The servlet uses an
internal interface of the rules engine which executes the MLM and returns the result to
the servlet, which finally returns it to the requesting system. The internal interface can
also be used directly by Java threads that are running in the same Java process. A remote
evocation of this Java interface has not been achieved so far.

Regardless of whether the MLM is called by the Java API or via the servlet, the calling
thread (or process) is blocked until the MLM stops. The direct evocation can therefore
be used for tasks where the continuation of the process directly depends on the result of
the MLM, for example the verification of contraindications while administering drugs.

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 97

The interface statement
The Arden Syntax defines the ‘interface’ statement that provides direct access to institution-
specific functions from an MLM. As the whole system is based on Java, it is possible to
call Java methods directly from an MLM.

An interface is defined in the data slot by a mapping that includes the type of the interface
(so far only the keyword ‘class’ is supported) by the fully qualified class name, and the
name of the method name that has to be called. The method has to accept exactly one
argument of ‘ArrayList’ type that contains an arbitrary number of arguments whose data
type is one of the Arden Syntax data type Java classes.

The following example shows the use of an interface for computing an Arden Syntax date
based on a textual representation of a date, such as ‘05.07.1975’.

Example 35: (Use of the interface statement to call Java methods)

The interface that is to be called has to be defined within the data slot:

stringtodate := interface
{class;de.medstage.projects.cadiag.ardenifc.StringToDate;stringToDate };

It can then be used within the logic slot by passing one argument that repre-
sents a date in textual form:

birthdateAsDate := call stringtodate with birthdate;

The Java class ‘StringToDate’ implements the method ‘stringToDate’ as fol-
lows:

0: public static Object stringToDate(ArrayList datestringVec) {
1: try {
2: ArdenString dateString = (ArdenString)datestringVec.get(0);
3: ...
4: ...
5: ArdenTime dateAsArdenTime = new ArdenTime(dateAsDate);
6: dateAsArdenTime.setPrimaryTime(dateString.getPrimaryTime());
7: return dateAsArdenTime;
8: } catch (Exception e) {
9: ...
10: return null;
11: }
12: }

The type definitions of the method are restricted exactly as shown
in line 0, as the method is looked up dynamically and the lookup
mechanism presumes these data types for result and argument. Ev-
ery argument can be accessed in the ArrayList starting from position
0 (line 2). The result is computed as Arden Syntax data type (line
5) and has, in this example, the same primary time as the argument
(line 6).

By making use of this interface technique, complex or performance critical operations can
be out-sourced to Java methods.

98 CHAPTER 3. APPLICATION OF METHODS

Figure 3.7: Main administration screen of the rules engine

User interface
The administration of the rules engine is entirely web-based and makes use of static HTML
pages and dynamic Java servlets and JSPs. The Tomcat servlet server that embeds the
rules engine is also used to host the static HTML pages.

The main screen of the engine is shown in figure 3.7. The user interface provides the main
navigation bar on the left side and a smaller navigation bar on the top that indicates the
current position of the user within the user interface structure.

Starting from the main screen, the user can browse through the knowledge base by clicking
on the link in the main navigation bar. The knowledge base is basically structured into
valid MLMs, which have been parsed without errors, and into invalid MLMs, which caused
errors during the parsing process. The valid MLMs are structured by the directories in
correspondence to their origin location in the file system. Figure 3.8 shows the content
of one such ‘directory’ that contains two sample MLMs. The upper navigation bar shows
the path that led to the current view.

The view on a set of MLMs provides information about the individual names and, if
available, the description as defined in the corresponding slot. The MLMs can be marked
by a checkbox and reloaded or removed from the knowledge base by selecting one action
in the box at the bottom of the table. An MLM can be displayed in the web browser
by selecting its name in the directory view. The MLM Java objects provide methods to
generate an XML representation of the MLM that is converted into HTML and displayed
in the browser (figure 3.9). The XML representation has been specifically designed for this
conversion into HTML and does not use the approach that is currently employed in the
HL7 Arden Syntax SIG59. In contrast to the detailed definition of the SIG that could be
used in the future to check the validity of an MLM, it only defines basic structures such as

59The SIG defines an XML representation that can be used to validate the MLM, as when using the
BNF.

3.1. DESIGN AND IMPLEMENTATION OF THE RULES ENGINE 99

Figure 3.8: Knowledge base user interface of the rules engine

‘category’, ‘slot’, or ‘operator’, which are needed to distinguish single elements that have
to be displayed on the screen in different style. The XML representation is transformed
by the browser on-the-fly into an HTML page that uses cascading style sheets (CSS). The
DTD and XSLT files can be found in appendix D. Thus, changing the appearance of the
MLM in the browser does not require changes in the XML-generating methods of the Java
classes, as only either the XSLT file or the CSS file has to be modified.

3.1.4 Testing

To test the implementation of the rules engine, 23 MLMs were written. These were
designed to verify almost the entire functionality of Arden Syntax as defined by the spec-
ification. Only a few features were not implemented and were therefore not included in
the test MLMs, such as some features of the ‘formatted as’ operator.

The test process is structured in two sets of MLMs, each representing one test step. The
first set of MLMs has to be executed individually. It tests the functionality of assigning
values to variables and retrieving them, including primary time issues. Some of the basic
comparison operators as well as the list concatenation are tested. The test results are
displayed as plain text and have to be checked by the user manually.

The second set uses those functionalities tested by the first step to automatize the control
of the test results. The second step uses MLMs which test the functionality of all opera-
tors. Each class of operators, such as aggregation operators or transformation operators,
is tested by one individual MLM. For each operator, all permutations of arguments and
argument data types are tested according to the specification. The result of every single
test is stored in a list. A parallel list stores the correct results (as defined by the spec-
ification) as constants. After the execution of all tests, the two lists are compared and
erroneous tests results are displayed to the user.

100 CHAPTER 3. APPLICATION OF METHODS

Figure 3.9: MLM representation as XML/HTML

3.2 CADIAG-II/RHEUMA+Arden

The medical expert system CADIAG-II (Computer Assisted DIAGnosis) created at the
University of Vienna can assist the differential diagnostic process in internal medicine by
indicating all possible disease hypotheses which can explain the given symptoms from the
patient data and which include frequent as well as rare disease definitions. The rheumato-
logical part includes more than 200 disease profiles, more than 2.000 findings, more than
50.000 finding-disease-relationships, and more than 160 complex rules.

In its original table-based form the knowledge base is difficult to read and therefore dif-
ficult to maintain. As an alternative representation, a Fuzzy Arden-based version of the
knowledge base was created and tested for routine applicability.

3.2.1 Introduction

The historical roots of CADIAG-II lie in the development of CADIAG in the early 70’s.
The first version of the knowledge base represented relationships between medical enti-
ties such as symptoms, symptom combinations, and diseases, and used a three-valued
logic that was able to represent ‘true’, ‘false’, and ‘unknown’ entities. The relationships
between the entities defined whether the presence of one entity, such as a symptom, is
either obligatory or facultative for the presence of another one, for instance a disease, and
whether an entity is proved by the other one or not. As CADIAG has been integrated
into the hospital information system WAMIS60 of the Vienna General Hospital, it could
be used in clinical routine to propose diagnoses for patients suffering from one or more
rheumatological diseases [AKL+82].

60WAMIS is the German acronym for “Wiener Allgemeines Medizinisches Informations System” (Vienna
General Medical Information System).

3.2. CADIAG-II/RHEUMA+ARDEN 101

In the early 80s the underling logic was extended to a fuzzy logic, which additionally
included two further values representing unknown facts (in the following null is used) and
discrepant ones (in the following ω is used) [Adl80]. The inference process is based on
disease profiles that consist of relationships between entities as mentioned earlier and on
complex diagnostic rules that combine entities.

The relationships define, like in CADIAG, a degree (or strength) of evidence and a degree
(or frequency) of occurrence between two entities, such as symptom and diagnosis. In
contrast to CADIAG these degrees may be defined fuzzily; the evidence of a symptom to
a diagnosis could then not only be ‘true’ or ‘false’, but take on any intermediate degree.
For example, if a symptom proves a diagnosis often, then it would imply a reduced degree
of evidence for the relationship between symptom and diagnosis. The definition of the
relationships are either based on expert knowledge, which was initially represented by
terms such as “always”, “almost always”, “very often”, or “very strong”, or by stochastic
evaluation of patient data [AK82].

Like CADIAG, the successor has been fully included in the hospital information sys-
tem WAMIS of the Vienna General Hospital [AKSG86,ALK96]. Currently the CADIAG
knowledge base is to be re-implemented by integrating it into the MedFrame platform as
CADIAG-IV [KAR01].

3.2.1.1 Structure of the knowledge base

The knowledge base is represented by a set of relational data base tables. They define
disease definitions whose structure is outlined in figure 3.10. Every entity, such as a
diagnosis, is rated during the inference process in terms of presence by using a fuzzy truth
value from F0.0 (“not present”) to F1.0 (“present”) or can be ‘null’ (“unknown”) or ω
(“discrepancy”)61.

The diagnoses are the most abstract entities that are defined by relationships to other
entities, such as symptoms, symptom combinations, and other diagnoses. Every relation-
ship is based on logical implications and is defined by a degree of evidence and a degree of
occurrence62.

A relationship between two entities is defined by the antecedent, the consequent, a degree
of evidence and a degree of occurrence. Such a relationship can be represented as an
implication operator:

consequent :- implication(antecedent, degree of evidence, degree of occurrence)

This implication from one entity ej (antecedent) to another entity ei (consequent) with the
degree of evidence bji and the degree of occurrence aji is an aggregation of two individual
relations:

ej
bji−→ ei (3.1)

ej
aji←− ei (3.2)

61In the following, the expressions “the symptom is rated” and “the symptom is” will be used synony-
mously.

62In the original publications, the terms “strength of confirmation” and “frequency of occurrence” are
used.

102 CHAPTER 3. APPLICATION OF METHODS

institution independent

relationship to

(with degree of evidence and occurrence factor)

composed of

(inclusion or exclusion)

institution specific

(*) Two intermediate combinations referenced diagnoses as well as symptoms.

*

lab data

data to symbol

entries

diagnosis

symptomintermediate combination

symptom combination

documentation

Figure 3.10: Hierarchical structure of a CADIAG-II disease definition.

As CADAIG-II is based on fuzzy logic and entities can be rated gradually, both degrees can
be any value from 0.0 to 1.0. In the knowledge base the relationship between two entities
is defined symmetrically—the degree of evidence of ei to ej is the degree of occurrence
between ej and ei. The computation of the result mainly depends on the value of the
antecedent. Basically, four different constellations are possible:

• If ej is rated ‘false’ and the degree of occurrence is 1.0, then the consequent ei can
be excluded by using relation 3.2.

F0.0
aji=1.0←−−−− ei ⇒ ei = F0.0

• If the antecedent is ‘true’, the degree of evidence is 0.0 and the degree of occurrence
is 0.0, both relations exclude the consequence:

F1.0 0.0−→ ei

F1.0 0.0←− ei

}
⇒ ei = F0.0

• If the antecedent is greater than F0.0 then the relation 3.1 is used, as the antecedent
proves the consequent:

F1.0
bji−→ ei ⇒ ei = min(ej , F bji)

• If the antecedent is either ‘null’ or ω, then the consequent cannot be rated and is set
to ‘null’. Any other constellation yields also ‘null’, except for discrepancies in the
knowledge base that yield ω.

The implication operator that provides this functionality is defined in detail in the ap-
pendix C.1 (page 169).

Symptoms generally are based on data-to-symbol conversion rules and are additionally
defined by relationships to other symptoms. The data-to-symbol conversion rules are
either fuzzy sets or logical expressions that use Boolean documentation entries. A small
set of symptoms is classified by crisp sets.

Symptom combinations are logical expressions that use symptoms, intermediate com-
binations, and diagnosis as operands. In addition to the common logical operators ‘and’,

3.2. CADIAG-II/RHEUMA+ARDEN 103

‘or’, and ‘not’, two operators ‘at least of’ and ‘at most of’ are used to build the expression.
Intermediate operators are structured like symptom combinations, but mainly include
only symptoms as operands (except for two intermediate combinations which, however,
include also diagnoses).

3.2.1.2 Inferencing

The inference process of CADIAG-II has been described in detail in [Fis94]. The structure
shown in figure 3.11 differs slightly from the one described in that publication but describes
the same process.

As—because of the symmetric definition of relationships—symptoms, diagnoses, and symp-
tom combinations may influence each other whenever the rating of one entity is changed,
some parts of the inference process are iterative.

After the initial data-to-symbol conversion, which is based on three components (numeric
data converted by fuzzy sets, numeric data converted by crisp sets, and Boolean data
converted by logical expressions), the symptom to symptom relationships are evaluated.
This iterative step is repeated until no symptom gets a higher rating than the preceding
iteration. When it has terminated, all ratings of the symptoms are fixed and will not
change for the remaining inference process63. In addition, as described by the original
creators of the CADIAG-II system, some radiological findings need further post-processing.
Those findings that are still undefined (‘null’) after the computation of the symptoms (as
described in the next step) have to be set to ‘false’. The corresponding MLM is shown in
appendix C.3.

yes

data to symbol conversion

symptom to symptom
relationships

higher rated
symptoms?

symptom to diagnosis
relationships

realationships
diagnosis to diagnosis

symptom combinations
intermediate and

diagnosis to diagnosis
and diagnosis to

symptom combination
relationships

higher rated
diagnoses?

no

yes

no

Figure 3.11: Structure of the CADIAG-II inference process

Then, in one non-iterative step, the first ratings of the diagnoses are computed by evaluat-
ing the symptom-to-diagnosis relationships. Next, all diagnosis-to-diagnosis relationships

63As all relations are defined symmetrically, symptom-to-diagnosis relationships have a corresponding
diagnosis-to-symptom relationship. This type of relationship is not intended to recompute symptoms,
but can be used to easily identify symptoms that were rated unknown but might reinforce a diagnostic
hypothesis.

104 CHAPTER 3. APPLICATION OF METHODS

are evaluated iteratively until their ratings are constant. After these first ratings of the
diagnoses, the intermediate combinations and symptom combinations, which partially use
diagnoses in their definitions, are computed. The last (iterative) step recomputes the
diagnoses by additionally including the diagnosis-to-symptom combination relationships.
The iteration is repeated until all diagnoses are constant.

As every diagnosis or symptom can have more than one relationship to other entities, all
single values which have been computed by the implication operator have to be aggregated
to one new rating of the current entity. The ‘inference operator’ ⊕ computes this aggre-
gation and additionally considers the recent rating of the entity in the last iteration. The
new rating (in iteration n+ 1) for an entity en+1

i is computed on the basis of its old rating
en
i on the one hand, and on the results of the relationships to other entities on the other.

One important characteristic of ⊕ is that the new rating on an entity cannot be below
the old one—the rating of a symptom or diagnosis can only be increased by additional
evidences but never decreased. If the entity or any related one is rated ω the new rating
is also ω. The operator is formally defined in appendix C.2.

3.2.1.3 Logical operators

As mentioned in the introduction, fuzzy set theory and fuzzy logic allow the definition of
intersections (‘and’), unions (‘or’), and negations (‘not’) in multiple ways. Fuzzy Arden
uses the most common methods, the ‘min’ operator for realizing ‘and’, the ‘max’ operator
for realizing ‘or’, and the 1− x operation to compute the negation of a fuzzy truth value
x (compare table 2.3 on page 63).

CADIAG-II allows the user to chose between the set of logical operators as defined earlier
and an alternative set of operators, which never return unknown values (table 3.1)64. These
operators assume that symptoms which were not examined and therefore are rated as ‘null’
can be interpreted as ‘false’65. This optimistic assumption implies that unknown facts are
only unknown because they either do not contribute to the result (and are therefore not
needed) or because they are very likely not present as they would only be examined in
case of strong suspicion. This could be the case when invasive methods such as biopsies
would be required to exclude an symptom. However, this optimistic approach might fail
if unknown facts are only unknown because the examining person failed to perform one
or more examinations.

The reason to use modified operators can be shown, for example, on the basis of the typical
structure of a symptom combination (figure 3.12). The combination consists of a set of
indicative entities and a set of contradictory entities. To prove the symptom combination,
all contradictive entities have to be ‘false’; then the ‘at least 1 of n’ operator would return
‘false’ and the ‘not’ operator would invert this result yielding ‘true’. If the indicative
condition is rated positively, the whole expression yields ‘true’.

In case all contraindicating elements are ‘false’ except one, which is unknown, the whole
expression is rated ‘null’, independent of the indications. The reason is that the con-
traindication could not be excluded as elements were unknown and therefore the final
‘and’ operator would yield ‘null’ independent of the indications.

64Further, the definition of the logical operators equates unknown facts with contradictory facts (that
is, ε = ω). Bold entries mark changes compared to the classic operator set.

65This method is similar to the concept of the closed world assumption where unknown facts are inter-
preted automatically as being ‘not present’. However, as facts derived from a numerical laboratory values
can still be rated unknown, the closed world assumption does not fully apply.

3.2. CADIAG-II/RHEUMA+ARDEN 105

Table 3.1: Fuzzy logical operators truth-tables used by CADIAG-II

x1 and x2 true (F0.0, F1.0) false other
true true x2 false false

(F0.0,F1.0) x1 fuzzy and false false
false false false false false

other false false false false

x1 or x2 true (F0.0, F1.0) false other
true true true true true

(F0.0,F1.0) true fuzzy or x1 x1

false true x2 false false
other true x2 false false

not x1 true (F0.0, F1.0) false other
false 1− x1 true true

If such a missing symptom can only be determined by invasive examinations such as a
biopsy, it may be justifiable to interpret an unknown symptom as ‘false’. It may be
assumed that an invasive examination would be ordered only if the likelihood of validat-
ing the suspicion for a symptom is rather high. If the suspicion is not enough to order
the examination, the operator set used by CADIAG-II would rate the sample symptom
combination as ‘false’, even if one or more contraindicating symptoms were unknown.

contraindications

not

and

at least u/v:

at least x/y:

indications

Figure 3.12: Structure of typical symptom combination

In addition to the regular logical operators CADIAG-II uses two operators, namely ‘at least
of’ and ‘at most of’. Both operators use a set with m elements as argument and include
a condition n (where n < m) that defines how many elements have to be true at least (or
at most). The ‘at least’ operator is ‘true’, if any permutation of n elements out of the
set of m elements includes only ‘true’ elements. As the number of permutations increases
fast even for rather small sets, a simple algorithm is used. The result is computed by

106 CHAPTER 3. APPLICATION OF METHODS

selecting the smallest element from the n greatest elements. To sort the lists of elements,
the following order is used:

F1.0 > F0.0 > null

The at ‘most of’ operator is implemented as:

at most n of N := not (at least n + 1 of N)

3.2.2 Pre-processing of the input files

Before the expert system could be represented and implemented by Fuzzy Arden, the
source files had to be pre-processed for an easier conversion process.

3.2.2.1 Knowledge base files

The original table-based CADIAG-II knowledge base has been exported from the WAMIS
system to ASCII files in dBase format, which were converted by Dieter Kopecky (Depart-
ment of Medical Computer Sciences of the University of Vienna) to a comma-separated
file format (CSV). Therefore the files were already available as pre-processed data.

From the original 17 files, six files where used to create the Arden Syntax-based represen-
tation of CADIAG-II/RHEUMA:

• WAMIS and CADIAG use different codes for the same medical entities. The neces-
sary mappings are defined in the file ‘wbstamm’. To support the creation of natural
language reports, the file ‘wbtext’ contains German and English terms for most
CADIAG codes.

• The data-to-symbol conversion layer is represented by entries in ‘wbbef’ and ‘wb-
doku’. The first file contains all numerical data-to-symbol conversions based on fuzzy
sets; the second one defines all data based on binary documentation entries. Addi-
tionally, some crisp sets are defined hidden in another file ‘wbdgw’ whic, however,
only contains the units of the fuzzy sets in textual form.

• The symptom combinations and the intermediate combinations are defined by entries
in ‘wbkomb’ while all needed relationships are defined by entries in ‘wbrel’.

3.2.2.2 Patient data files

The Fuzzy Arden representation of the knowledge base has been evaluated by a set of
employed patient data consisting of 3277 cases. The data is represented by four data base
tables: ‘pkdoku’ contains all master data for each patient. Each patient is identified by a
numerical code that defines the ‘Arbeitssnummer’ (the correct translation would be ‘work
number’; the term ‘patient id’ is used in the following) and a numerical entry for the stay
of the patient. Both units of information link all other patient data to one specific stay of
one specific patient.

The clinical data is separated into the following classes:

• Documentation entries are stored in ‘pdoku’. Every entry is referenced by the patient
id, the patient stay, and an individual code. The entries were entered on a screen
on which the clinical staff had the possibility to select or deselect single symptoms.

3.2. CADIAG-II/RHEUMA+ARDEN 107

Therefore the values of these symptoms are binary. The data base contains only
those symptoms which where selected; all non-selected are not present in the data
base and will be later rated as ‘false’. It is therefore not possible to mark unknown
documentation entries. Some documentation entries which are numerical and used
to classify the symptoms based on crisp sets are additionally stored in ‘pkdoku’.

• Numerical results from the lab are stored in ‘plabor’; again, each value is identified
by the patient id and stay and a code.

• Some additional findings that could not be stored in the WAMIS system where stored
in an additional data base named ‘proe’. They include radiographic findings that
need additional pre-processing.

The MedStage platform that has been used to manage the data does not define a particular
data base schema. A scheme can be defined by a tool that uses an XML file containing
all necessary definitions. Therefore, a data base scheme equivalent to the WAMIS system
could very easily be defined by four tables ‘pkdoku’, ‘pdoku’, ‘plabor’, and ‘proe’. The
patient data were imported in a nearly identical format as the one originally used. The
files were pre-processed: for example, ‘pdoku’ stored up to ten documentation values in
one table entry. One such entry in ‘pdoku’

67035955;1;;S03;06.06.1990;;A;202;209;215;220;227;237;242;252

has been converted in up to ten entries for easier and faster data base queries.

67035955;1;1990-06-06;S03;A;202
67035955;1;1990-06-06;S03;A;209
67035955;1;1990-06-06;S03;A;215
...

3.2.3 Creation of the MLMs: highly modular approach

The representation of the knowledge base by Arden Syntax MLMs was achieved by two
different approaches. The first one, which is described in this section, created a very mod-
ular knowledge base where nearly every single entity, such as a symptom, a combination,
or a diagnosis, was represented by one individual MLM. The second one that is described
after this section created a set of nine MLMs that represented single inference steps (as
shown before in figure 3.11) instead of representing each entity as an individual MLM.
Both approaches additionally use a set of helper MLMs that provide an interface to the
data storage system and some further functionalities, such as report formatting.

One principle of the Arden Syntax is the modularity of the knowledge base. This was one
reason to create a representation of the knowledge base in which the knowledge nuggets,
such as diagnoses, symptoms, or combinations, are defined by individual MLMs. The
intention was to increase the overall readability of the disease definitions and thus achieve
easier maintainability of the knowledge base.

At the beginning of the inference process all entities are undefined (‘null’). To compute
the rating of an entity it is therefore required to call those MLMs that define the other
entities and to process their results. The implication operator and the inference operator
that process these results were implemented by two MLMs. Their implementation follows
the definition given in the introduction and is explained in detail in the appendix C. The
main inference process is driven by one inference MLM which calls sequentially the MLMs
that define the diagnoses.

108 CHAPTER 3. APPLICATION OF METHODS

3.2.3.1 Structure

Every diagnosis is defined by one individual MLM. Such a diagnosis MLM defines refer-
ences all those MLMs that represent other diagnoses, symptoms, or combinations, which
have a relationship to the current one (see figure 3.13). Analogously, a combination MLM
references all MLMs that represent the single elements of the combination, and a symptom
MLM references the data-to-symbol conversion MLM that basically defines the symptom
and those symptom MLMs that are related to the current one.

(w
ith

 d
eg

re
e

of
 e

vi
de

nc
e

an
d

oc
cu

rr
en

ce
 fa

ct
or

)

co
m

po
se

d
of

(in
cl

us
io

n
or

 e
xc

lu
si

on
)

df____2df____1 df____5

bf___27bf____2

pt____8

sf___34 sf___35sf___33 sf__643

AA07AHAA AA07AHAB2 AA07AHAB4

CADIAG−II

WAMIS

re
la

tio
ns

hi
p

to
Figure 3.13: Structure of the modular CADIAG-II/Arden representation

The knowledge base is evaluated by one main MLM that calls all diagnosis MLMs, which
evaluate their relationships by calling the corresponding MLMs. One issue of this inference
process is the symmetric definition of relationships between entities: Whenever an entity
ei has to evaluate its relationship to an entity ej it calls the corresponding MLM which
defines the same relationship. As this MLM alone has the information to evaluate the
relationship, it would call the first MLM despite the fact that it has just been called by it
(figure 3.14).

sf___33 sf___34

Figure 3.14: Recursiveness of the knowledge base

Such endless calls from one MLM to another one, or, more generally, calls of MLMs that
already have been called once, have to be avoided in some way. This issue has been
resolved by using a list that contained the names of all those MLMs that have previously
been called once. Whenever an MLM call has to be executed, it is first checked whether
the name of the MLM is an element of this list. If so, it is assumed that that entity has
already been rated and its current rating is used instead of calling the MLM again.

3.2. CADIAG-II/RHEUMA+ARDEN 109

Example 36: (Anti-recursion mechanism)

The first diagnosis that is called by the inference MLM is “Rheumatoid Arthri-
tis, Unspecified” (DF 1). It includes a relationship to “Felty’s Syndrome” (DF
2). First, it marks itself as already called by including its own label in the
‘calledMLMs’ list. During the execution of the logic it checks if the MLM
‘DF 2’ has already been called and calls it (as at this point the list only
contains the label of DF 1).

calledMLMs := calledMLMs, "DF____1";
...
if "DF____2" is not in calledMLMs then

calledMLMs := call mlmDF____2 with calledMLMs;
endif;

The MLM of DF 2 has defined the same relationship (with swapped degree of
evidence and degree of occurrence that) and tries therefore to call the MLM
of DF 1. As this MLM already is an element of the list ‘calledMLMs’, it is not
called again.

calledMLMs := calledMLMs, "DF____2";
...
if "DF____1" is not in calledMLMs then

calledMLMs := call mlmDF____1 with calledMLMs;
endif;

Arden Syntax defines all variables locally; one MLM does not know the variables of an-
other. One way to get the rating of an entity could be, as shown in the last example, to
return the rating as a result of the MLM call. But whenever the anti-recursion mechanism
blocks an MLM call, no rating for the referenced MLM could be returned. To access
the current value of an entity it is therefore required to store all ratings in intermediate
variables.

3.2.3.2 Intermediate variables

As the argument/result data transfer between two MLMs cannot be used effectively be-
cause of the anti-recursion mechanism, the system needs to use ‘intermediate variables’
that are passed from one MLM to another and represent the rating of the entities. One im-
plementation is to carry on two lists as arguments for every MLM call where one contains
the labels of the entities and the other, the corresponding values (ratings).

110 CHAPTER 3. APPLICATION OF METHODS

Example 37: (Sharing intermediate variables as arguments)

0: calledMLMs := calledMLMs, "DF____1";
1: ...
2: if "DF____2" is not in calledMLMs then
3: (calledMLMs, entityLabels, entityValues) := call mlmDF____2
4: with calledMLMs, entityLabels, entityValues;
5: endif;
6: ...
7: /* lookup position of label in entityLabels and get
8: the corresponding value in entityValues */
9: ...

10: elements := count entityLabels;
11: position := 1;
12: found := false;
13: while (found = false) and (position <= elements) do
14: if entityLabels[position] is equal to "DF____2" then
15: found := true;
16: endif;
17: enddo;
18: ...
19: if found = true then
20: DF____2 := entityValues[position];
21: else
22: DF____2 := null;
23: endif;

The intermediate variables are stored in two lists that are passed when calling
an MLM as argument (line 4) and returned with updated values as a result of
the call (line 3). To look up one particular value the corresponding label has
to be located in the list that stores the labels (lines 10 to 17). If it is found
the value can be mapped to a local variable; if not it is set to ‘null’ (lines 19
to 23).

However, when dealing with 2000 entities that are used by more than 50000 relationships
and rules, the costs of searching one specific value in the list would significantly slow down
the system. On average, an implementation as shown in the last example would have to
execute 1000 comparison operators before the position of the corresponding value in the
other list is found66. As a tribute to the performance, the intermediate variables have
been implemented by using the ‘interface’ methodology of Arden Syntax. A set of value
storage MLMs can be used to store and retrieve intermediate variables. These MLMs
capsule interfaces to a Java class, which stores the values by their labels more efficiently
than any Arden Syntax-based solution could do.

Example 38: (Sharing intermediate variables by interfaces)

0: storageId := argument; ...
1: calledMLMs := calledMLMs, "DF____1";
2: ...
3: if "DF____2" is not in calledMLMs then
4: calledMLMs := call mlmDF____2 with calledMLMs, storageId;
5: endif;
6: ...
7: DF____2 := call storage_extract with "DF____2", storageId;

66A ‘for’ loop that could have been used to implement the search more readably would iterate the whole
list, as it does not provide any means of interrupting its execution.

3.2. CADIAG-II/RHEUMA+ARDEN 111

In contrast to the method shown in the preceding example, the intermediate
variables are not passed as argument when calling another MLM, but are
referenced by a unique storage id (which was created at the beginning of the
inference process) that identifies the location of all intermediate variables. The
only result of such an MLM call is the list that represents those MLMs which
have been previously called for the anti-recursion mechanism (line 4).

The lookup method of the last example is simply replaced by one MLM call
that needs the label of the intermediate variable and the storage id (line 7).

3.2.3.3 Data base cache

As shown before in figure 3.13, the definition of a disease may be regarded as a tree
with the name of the diagnoses as the root and the data-to-symbol conversion rules as
leaves. Since many symptoms are used by more than one disease definition or symptom
combination, the corresponding data-to-symbol conversion rules would be executed more
than once. As the results of these rules are constant and a multiple execution would be
redundant, all data-to-symbol conversion rules are executed once initially.

As every data-to-symbol MLM makes a query to the data base, the data-to-symbol conver-
sion became one performance bottleneck of the inference process. Intermediate variables
were used to enhance the performance of the data base access. The concept is similar
to the value storage explained earlier: At the beginning of an inference process, all data
of the patient are retrieved from the data base and stored by a Java class. Then, every
MLM can access the stored data by calling a Java method by the interface statement.
This interface is additionally hidden behind a set of MLMs that provide the functionality
to access the data. An example is given later.

3.2.3.4 Inferencing

At the beginning of the inference process all entities are rated ‘null’. If the rating of an
entity ei is influenced by the rating of another entity ej then the corresponding MLM
that has to compute the rating of ej is called. For the computation the rating of ei is
also needed, as the relationship is defined symmetrically; however, as its MLM had been
previously called once, the current rating ‘null’ of ei is used to compute ej .

The rating of ej , which is returned by intermediate variables to ei, could be incorrect as
ei could immediately change its own rating and the value ‘null’, which has been used to
compute ej , is no longer correct anymore.

Thus the first computations of entities might not yield the correct values as they might
depend on other entities that may still be undefined. As mentioned, the entire inference
process is controlled by a high-level MLM that has therefore to call iteratively every
diagnosis MLM (except for those that have been previously called by other diagnosis
MLMs), until the values of all diagnoses are constant.

In the second iteration e2
j can use the rating of e1

i to compute its rating, and e2
i can

therefore consider this new rating.

In summary, the modular knowledge base worked, but the quantity of MLM calls proved
a significant bottleneck. Despite all improvements by Java classes one iteration lasted
more than one minute; therefore this approach was discarded. The purpose of the second
approach was to reduce the time needed for the complete inference.

112 CHAPTER 3. APPLICATION OF METHODS

3.2.4 Creation of the MLMs: compact knowledge base

In contrast to the highly modular knowledge base, the compact one comprises only nine
MLMs for the inference process. In addition, the helper MLMs that define the operators
and provide the intermediate variables and data base cache are used in the same way as
described earlier.

The entire inference process is controlled by one MLM that initializes the data base cache
and the value storage and calls the single inference MLMs (figure 3.15). It starts with the
data-to-symbol conversion which includes three MLMs. Next, the symptoms are computed
by one iterative MLM. Then the diagnoses are rated by the symptoms, and the final ratings
are computed iteratively by three MLMs. The inference process is concluded by an MLM
that computes some additional scores which can optionally be used to sort the results.

final_score.mlm

d2s_crisp.mlm
d2s_fuzzy.mlm
d2s_documentation.mlm

rules_symptom2symptom.mlm

rules_symptom2diagnosis.mlm

rules_diagnosis2diag_and_combination.mlm

combinations_intermediate.mlm
combinations_symptoms.mlm

rules_diagnosis2diagnosis.mlm

cadiag_inference.mlm

Figure 3.15: Inference MLMs used by the compact knowledge base

3.2.4.1 Data-to-symbol conversion

During the data-to-symptom conversion the Arden Syntax knowledge base still uses WAMIS
codes for the findings instead of CADIAG codes. Basically, the data-to-symptom conver-
sion is executed by two MLMs that implement the fuzzy classification of symptoms and
the determination of symptoms based on Boolean documentation entries. Additionally,
16 rules are defined in a separate MLM to classify symptoms based on crisp sets67.

Example 39: (Crisp classification of symptoms)

0: /**
1: * symptom C05BP1 (RHEUMATIC-LATEX-TEST, NEGATIVE)
2: * is set to true, if
3: * B0834,N07 is 1: NEGATIVE
4: **/
5: classification := (B0834_N07 = 1);
6: labels := labels, "AA07C05BP1";
7: results := results, classification;

67Strictly speaking, as shown in example 39, the crisp classified symptoms are already represented by
symbols. The numerical entries are codes for certain ranges of the test result which have been selected by
using a form. For example, a rheumatic-latex test result of 2 means that it is slightly elevated (+).

3.2. CADIAG-II/RHEUMA+ARDEN 113

8:
9: /**
10: * symptom C05BP2 (RHEUMATIC-LATEX-TEST, POSITIVE)
11: * is set to true, if
12: * B0834,N07 is 2: +
13: * B0834,N07 is 3: ++
14: * B0834,N07 is 4: +++
15: **/
16: classification := (B0834_N07 = 2) or (B0834_N07 = 3) or (B0834_N07 = 4);
17: labels := labels, "AA07C05BP2";
18: results := results, classification;

The first ratings of symptoms based on crisp classifications are computed by
checking whether the pre-classified findings are within a certain range (lines 5
and 16). The resulting truth value is stored as intermediate variable by adding
the value and a CADIAG finding code to the corresponding lists (lines 6, 7
and 17,18).

Each symptom that is based on a fuzzy classification is defined as in the following exam-
ple. It shows the data-to-symbol conversion for two symptoms, which basically are two
characteristics of the same concept68.

Example 40: (Classification of symptoms by fuzzy sets)

0: /* compute value for symptom AA07C01BU2
1: (GPT, SERUM, INCREASED) */
2: if male = true then
3: resB0832_N03 := B0832_N03 >= 24.0 fuzzified by 2.0;
4: else
5: resB0832_N03 := B0832_N03 >= 19.0 fuzzified by 2.0;
6: endif;
7:
8: results := results, resB0832_N03;
9: labels := labels, "AA07C01BU2";
10:
11: /* compute value for symptom AA07C01BU3
12: (GPT, SERUM, SIGNIFICANTLY INCREASED) */
13: resB0832_N03 := B0832_N03 >= 270.0 fuzzified by 40.0;
14:
15: results := results, resB0832_N03;
16: labels := labels, "AA07C01BU3";

The first characteristic ‘increased’ depends on the gender of the patient (line
2), the second does not69. The result of the fuzzified comparison (lines 3, 5,
and 13) is either a fuzzy truth value or ‘null’, if the value (identified by the
data base code ‘B0832 N03’ in this example) was not found in the set of patient
data. The result of the classification is stored as an intermediate variable; both
characteristics use their own CADIAG finding code.

Fuzzy classifications of symptoms may additionally be age dependent, as shown in the
following example. The variable ‘age’ represents the age of the patients at the moment

68Such a concept could also be represented by one “knowledge nugget” as linguistic variables that
aggregates characteristics of one concept. However, as in the original system, such characteristics are
represented by separate codes.

69The variable ‘male’ is assigned at the beginning of the inference process.

114 CHAPTER 3. APPLICATION OF METHODS

of measurement of the finding. The age is determined at the beginning of the inference
process, based on the day of admission of the patient’s current stay.

Example 41: (Age dependent classification of symptoms)

0: /* compute value for symptom AA07BAUBBA
1: (EXTREMITIES, RIGHT HAND, LOSS OF FORCE) */
2: /* fuzzy sets are age dependent (crisp) */
3: if age is within 16.0 to 65.0 then
4: resS04_511 := S04_511 <= 6.0 fuzzified by 1.0;
5: elseif age is within 0.0 to 15.0 then
6: resS04_511 := S04_511 <= 5.0 fuzzified by 1.0;
7: elseif age is within 66.0 to 120.0 then
8: resS04_511 := S04_511 <= 5.0 fuzzified by 1.0;
9: endif;
10:
11: results := results, resS04_511;
12: labels := labels, "AA07BAUBBA";

So far the age comparison is defined crisply (as it has been in the original
knowledge base) (lines 3, 5, and 7), whereas the data to symbol conversion is
fuzzy (lines 4, 6, and 8).

Symptoms based on documentation entries are either ‘true’ or ‘false’. Their data to symbol
conversion rules are based on the existence of entries in the data base. Generally, if an
entry exists the symptom is rated ‘true’, else it is rated ‘false’. This classification can be
easily implemented by the ‘exists’ operator. Most definitions are based on only one entry,
some are based on more than one (as shown in the next example), and few are based on
large logical constructs.

Example 42: (Crisp classification of symptoms based on document entries)

0: /* SKIN AND MUCOUS MEMBRANES, REDDENED */
1: result :=
2: (
3: (exists S03314)
4: and
5: (exists S03344)
6:);
7:
8: results := results, result;
9: labels := labels, "AA07BABEM3";

Such findings cannot be ‘null’, as the ‘exists’ operator returns ‘false’ if its
argument is ‘null’ (lines 3, 5).

3.2.4.2 Computation of the symptoms

After the data-to-symbol conversion of the findings, the ratings for the symptoms are
computed by one MLM in three steps. The current ratings are read from the value storage
and assigned to local variables whose labels are equal to the CADIAG symptom codes.

3.2. CADIAG-II/RHEUMA+ARDEN 115

Example 43: (rules symptom2symptom.mlm: code fragment of the data slot (I))

0: /* get initial values for symbols defined by data2symbol conversion MLM */
1: labels := "AA07C75KN12", "AA07BAUAK", "AA07BAUET4", "AA07BAUET3", ...
2:
3: /* get values from value storage */
4: resList := call valueExtract with valuesId, labels;
5:
6: /* assign to local variables */
7: SF_1000 := resList[1]; SF_1012 := resList[2]; SF_1035 := resList[3];
8: SF_1049 := resList[4]; ...

The value storage access is prepared by defining a list of labels (line 1) and
done by calling the helper MLM (line 4). Then the results are assigned to local
variables (lines 7, 8)70.

Instead of mapping the results to local variables the values could be accessed directly from
the list that is returned by the value storage MLM. Looking at the last example, instead of
accessing variable ‘SF 1049’ it would be possible to access the value by using resList[4].
However, the slight benefit of performance does not justify the worsened readability if the
symptom code variables were replaced by abstract list positions.

Some CADIAG symptoms are based on data that are not stored in WAMIS and have
therefore no WAMIS code. These symptoms are defined by external Boolean data, as
shown in the next code fragment.

Example 44: (rules symptom2symptom.mlm: code fragment of the data slot (II))

0: /* get initial values for symbols defined by PROE database */
1: dbCode := "KRM", "BATTB", "BAUTBD", "FWDBA", ...
2:
3: /* get values from data base cache */
4: resList := call db_access with valuesId, dbCode;
5:
6: /* assign to local variables */
7: SF_1001 := resList[1]; SF_1011 := resList[2]; SF_1013 := resList[3];
8: SF_1014 := resList[4];...

The structure is similar to the one used for WAMIS symptoms as shown in the
previous example. 409 symptoms are based on external data.

As mentioned earlier, some radiological symptoms that are unknown at this point of the
inference process are separately set to ‘false’ (compare appendix C.3).

At this point all symptoms are pre-rated by the result of the data-to-symbol conversion
or by the existence of additional data. In addition, 358 symptoms have relationships to
other symptoms. As explained in the first modular approach for the relationships between
entities, these relationships are evaluated by using the implication and inference operators
iteratively until all symptoms are constant.

70Three dots in a line indicate further elements or assignments that have been removed from the example
as the complete list of 717 symptoms, which are based on the data-to-symbol conversion, would have been
to large to be printed.

116 CHAPTER 3. APPLICATION OF METHODS

Example 45: (rules symptom2symptom.mlm: code fragment of the logic slot)

0: changes := true;
1: firstIteration := true;
2: iterations := 0;
3:
4: symptomsToRecompute := ();
5: symptomsAffected := ();
6:
7: while changes = true do
8: /* EXTREMITIES, HAND, GOUT TOPHUS AT SEVERAL FINGERS (SF 1)*/
9: /* if this Code is set to omega, do not apply more rules */
10:
11: is_not_omega := not((SF____1 is string) and (SF____1 <> "omega"));
12: if (firstIteration = true
13: or ("SF____1" is in symptomsToRecompute and is_not_omega = true)) then
14:
15: /* relationship with other symptoms: eval all occur/evidence factors */
16: impValue := SF__474;
17: impEvidence := null;
18: impOccurrence := fuzzy 1.0;
19: impResults := call imp with impValue, impEvidence, impOccurrence;
20:
21: /* now compute result with scalar inference operator */
22: entitylist := SF____1, impResults;
23: newVal := call iop with entitylist;
24: both_not_null := not((newVal is null) and (SF____1 is null));
25 both_equal := newVal = SF____1;
26 if (both_not_null = true) and (both_equal is null or both_equal = false) then
27: SF____1 := newVal;
28: symptomsAffected := symptomsAffected, "SF__474";
29: endif;
30:
31: endif;
32:
33: ...
34:
35: firstIteration := false;
36: if ((count symptomsAffected) = 0) then changes := false; endif;
37: symptomsToRecompute := symptomsAffected;
38: symptomsAffected := ();
39: iterations := iterations + 1;
40: enddo;

During the first iteration every relationship is evaluated (line 12). For each
relationship the value of the entity (line 16), the degree of evidence (line 17),
and the degree of occurrence (line 18) are stored in three lists that are passed
as argument to the MLM which implements the implication operator (line
19). The result is a list that contains the ratings of all relationships to other
symptoms. Together with the current value for the symptom, they are used by
the inference operator-MLM to compute a new value for the current symptom
(lines 22, 23).

If the rating of the current symptom has changed all related symptoms have to
be recomputed in the next iteration, as all relationships are defined symmet-
rically (lines 24 to 29). Their codes are stored in the list ‘symptomsAffected’

3.2. CADIAG-II/RHEUMA+ARDEN 117

(line 28). After each iteration the symptoms stored in the list ‘symptomsAf-
fected’ are copied in the list ‘symptomsToRecompute’ which is used in the next
iteration as an additional condition for the computation of a symptom (line
13). Further, if a symptom is rated ω it does not need to be recomputed (lines
11, 13). As Arden Syntax does not bind variables to a certain data type, the
representation of this additional rating could easily be realized by assigning
the string “omega” to the variable.

After this step all symptoms are stored as intermediate variables by their CADIAG code
in the value storage.

3.2.4.3 Computation of the diagnoses

The first non iterative step for computing the diagnoses is the evaluation of their relation-
ships to the symptoms, represented as individual MLM. As the symptoms cannot change
anymore this step does not include any cross-influences by relationships that would require
an iterative computation.

Example 46: (rules symptom2diagnosis.mlm: cutout of the logic slot)

0: /* CHRONIC POLYARTHRITIS (DF 1)*/
1:
2: /* relationship with symptoms: process all occur/evidence factors */
3: impValue := SF___34, SF___35, SF___36, SF___37, SF___38, SF___39, SF___43,
4: SF___48, SF___50, SF___53, SF___54, ...
5: impEvidence := fuzzy 0.1, fuzzy 0.05, fuzzy 0.05, fuzzy 0.1, fuzzy 0.1,
6: fuzzy 0.05, fuzzy 0.05, fuzzy 0.05, fuzzy 0.05, fuzzy 0.05,
7: fuzzy 0.05, ...
8: impOccurrence := fuzzy 0.07, fuzzy 0.4, fuzzy 0.39, fuzzy 0.2, fuzzy 0.46,
9: fuzzy 0.05, fuzzy 0.08, fuzzy 0.05, fuzzy 0.39, fuzzy 0.04,
10: fuzzy 0.12, ...
11:
12: impResults := call imp with impValue, impEvidence, impOccurrence;
13:
14: /* now compute result with scalar inference operator */
15: entitylist := impResults[1], impResults[2], impResults[3], impResults[4],
16: impResults[5], impResults[6], impResults[7], ...
17:
18: newVal := call iop with entitylist;
19:
20: /* store result (lists used later by storage MLM) */
21: diagnoses_labels := diagnoses_labels, "DF____1";
22: diagnoses_values := diagnoses_values, newVal;
23:
24: /* prepare score of the diagnosis */
25: counter := 1; score := 0;
26: for anEntity in impValue do
27: if anEntity is not null then
28: if impEvidence[counter] is null then impE := fuzzy 0;
29 else impE := impEvidence[counter]; endif;
30: if impOccurrence[counter] is null then impO := fuzzy 0;
31 else impO := impOccurrence[counter]; endif;
32: score := score
33 + (score_weight_evidence * ((minimum (anEntity, impE)) as number))

118 CHAPTER 3. APPLICATION OF METHODS

34: + (score_weight_occurrence * ((minimum (anEntity, impO)) as number));
35: endif;
36: counter := counter + 1;
37: enddo;
38: diagnoses_score_labels := diagnoses_score_labels, "SCR_DF____1";
39: diagnoses_score_values := diagnoses_score_values, score;

335 relationships to symptoms are defined for the diagnosis ‘chronic polyarthri-
tis’. Analogous to the relationships between symptoms, all required informa-
tion for the implication operator is stored in three lists and passed to the
implication MLM (lines 3 to 12). The result is aggregated by the inference
operator MLM (lines 14 to 18).

Additionally, the scoring of the results is prepared (lines 25 to 37). The scoring
mechanism (which is defined by a weighted sum of the entities, their degree of
evidence, and their degree of occurrence) is defined in detail later.

The relationships between diagnoses are evaluated by the same iterative process as the
relationships between symptoms, which is therefore not explicitly shown here.

The final iteration additionally includes the evaluation of intermediate and symptom com-
binations. These combinations are structured like the data-to-symbol conversion rules for
documentation entries, i.e. by logical expressions that use ‘and’, ‘or’, ’not’, ‘at least’, and
‘at most’ operators.

Example 47: (Symptom combination: chronic polyarthritis)

0: /* REITER-SYNDROME (B=0.90) (BF___15) */
1: is_not_omega := not((BF___15 is string) and (BF___15 <> "omega"));
2: if is_not_omega = true then
3: newVal :=
4: (
5: (
6: not
7: at least 1 from (
8: SF_2166 /* EXTREMITIES, AFFECTION OF FINGER IN RAY */,
9: SF__234 /* SKIN, ERYTHEMA NODOSUM */,
10: PT___36 /* MUCOCUTANEOUS APHTHAE */,
11: PT___35 /* IRITIS OR IRIDOCYCLITIS */,
12: PT___34 /* CHRONIC DIARRHEA WITH LOSS OF BLOOD OR
13: DISCHARGE OF MUCUS */,
14: PT___33 /* PROOFED PSORIASIS */
15:)
16:)
17: and
18: at least 3 from (
19: PT___32 /* BALANITIS OR KERATODERMIA */
20: SF___68 /* CURRENT COMPLAINTS, STOOL, DIARRHEA */,
21: SF__955 /* CURRENT COMPLAINTS, URETHRITIS */,
22: PT___31 /* CONJUNCTIVITIS */,
23: PT___30 /* PAIN AND SWELLING OF AT LEAST ONE JOINT */
24:)
25:);
26: both_not_null := not((newVal is null) and (BF___15 is null));
27: both_equal := newVal = BF___15;
28: if (both_not_null = true) and (both_equal is null or both_equal = false) then
29: BF___15 := newVal;

3.2. CADIAG-II/RHEUMA+ARDEN 119

30: diagnosesAffected := diagnosesAffected, "DF___10";
31: endif;
32: endif;

Because of the stack-based conversion of the knowledge base, the indicating
entities are moved to the second half of the expression while the contraindicat-
ing entities are moved to the first half (compare figure 3.12). The expression
is only evaluated if the combination has not been rated contradictory before
(line 1).

If any diagnosis has a relationship to a combination that has changed its rating
(line 26 to 28), it is marked as an affected diagnosis for the next iteration (line
30). The list of affected diagnoses is returned as a result of the MLM to the
iterating MLM.

After the last iteration the inference process is terminated and the final scores of the
diagnoses are computed.

3.2.4.4 Scoring

As the result of one inference process may include many diagnoses with the same rating or
with low ratings, such as F0.1, a scoring mechanism that defines a sort criterion to display
the “best” diagnoses first was implemented. This mechanism is based on the ratings
of related entities and their degree of evidence and occurrence. As the diagnoses have
initially been scored on the basis of the symptoms, the final scores have only to consider
the relationships to diagnoses and symptom combinations. This scoring mechanism is well
described in [Fis94].

The score of an entity ej is the sum of the influence of all related entities ei in terms of
evidence and occurrence. The influence of one entity ei to ej is defined by the rating and
the degree of evidence

He
ij = min(ei, evdij)

and by the rating and the degree of occurrence

Ho
ij = min(ei, occij)

As the ‘min’ operator is used, entities that are rated ‘false’ have no influence on the score.
The higher the entities are rated and the higher the degree of evidence and the degree of
occurrence are, the higher the entity ej gets scored.

Additionally, two weights are used to control the influence of evidence (α) and occurrence
(β) on the score. The overall score of an entity ej is defined by

Pj =
nj∑
i=1

(α min(ei, evdij) + β min(ei, occij)) (3.3)

where nj are the indices for all symptoms, diagnoses, and symptom combinations related
to the entity ej .

3.2.5 Report generation

All results are represented by an XML file. The generation of the XML structure is done
for performance reasons by an interface that has been implemented in Java. Figure 3.16
sketches the structure of the result; the DTD is defined in appendix C.5.1.

120 CHAPTER 3. APPLICATION OF METHODS

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="http://127.0.0.1:8088/cadiag/CadiagResults.xsl"?>
<!DOCTYPE MLM SYSTEM "http://127.0.0.1:8088/cadiag/CadiagResults.dtd">
<CADIAG id="67035955">

<DIAGNOSES>
<TRUE>

<ENTRY>
<LABEL code="AA0871400" cadiag="DF____1">

<TEXT TOPIC="">CHRONISCHE POLYARTHRITIS</TEXT>
</LABEL>
<VALUES score="877.3">

<VALUE>0.90</VALUE>
<VALUE>0.80</VALUE>

</VALUES>
</ENTRY>
...

</TRUE>
<FALSE>...</FALSE>
<NULL>...</NULL>
<OMEGA>...</OMEGA>

</DIAGNOSES>
<SYMPTOM_COMB> ... </SYMPTOM_COMB>
<INTERM_COMB> ... </INTERM_COMB>
<SYMPTOMS> ... </SYMPTOMS>

</CADIAG>

Figure 3.16: Structure of the CADIAG XML result file

The XML file is structured into four categories: diagnoses, symptom combinations, in-
termediate combinations, and symptoms. Every category is structured into four parts:
hypothesis (“true” entities with truth value greater than F0.0), excluded entities (truth
value equal to F0.0), unknown entities (‘null’), and errors (‘omega’).

Every part contains entries that are composed of the textual label, the value, and the
score. Entries of hypothesis may contain more than one value if their value did change
during the inference process; the first value in the list is the last computed result. The
label is additionally separated into a fixed “topic” that can be constant if entities belong
to one thematic group (for example, symptoms that belong to a group of symptoms). The
topic is used to facilitate conversion into a clearly readable output format.

This XML file contains the values of all entities and can be processed before being dis-
played. For example, unknown entities may be removed and the diagnoses may be filtered
in order to display only those that have a high value and a high rating. A simple way to
display the XML file is to use a XSLT stylesheet that converts the XML file to HTML71.
A sample output is shown in figures 3.17 and 3.18, the used XSLT stylesheet is shown in
appendix C.5.2.

71XSLT is a specialized language for transforming XML documents.

3.2. CADIAG-II/RHEUMA+ARDEN 121

Figure 3.17: Cadiag sample result displayed as HTML e-mail (1)

Figure 3.18: Cadiag sample result displayed as HTML e-mail (2)

3.2.6 Helper MLMs and interfaces

Both approaches to represent the CADIAG-II knowledge base by Fuzzy Arden make use
of helper MLMs and Java interfaces. The implication operator and the inference operator
have been implemented as individual MLMs. They have been described earlier, their
definition and Arden Syntax implementation can be found in appendix C. The data base
cache and the value storage system are both realized by a set of MLMs used to evoke Java
interfaces.

122 CHAPTER 3. APPLICATION OF METHODS

Data base cache
The data base access was realized by using a set of MLMs that read all patient data
into a cache and provide a method to retrieve individual values from it (figure 3.19).
Initially, four MLMs read the data from the data base tables ‘pdoku’, ‘pkdoku’, ‘plabor’,
and ‘proe’. The data base queries, which are implemented by read statements that use
a SQL-like syntax within the curly braces, read all data related to the current patient.
After the data have been retrieved from the data base they are stored in the value storage
system that is implemented by a Java class and uses internally Java HashMaps and Java
ArrayLists to store the data.

Two MLMs provide access to the stored data, one for numerical lab values and the other
for documentation entries (both are represented by ‘get data base entry’ in the figure).
Internally both MLMs use the same Java interface and the same data storage. The differ-
ence between them is that absent values in the documentation entry data base are rated
as ‘false’ while absent values in other data bases are rated as unknown (‘null’)72. Both
MLMs are used by the data-to-symbol conversion MLMs only.

store

read

read

data base

proe

plabor

pkdoku

pdoku

initialize
storage

query new storage id

store

store

store

store

Java storage

ArrayLists

HashMaps

put variable

get variable

entry
get data base

Arden Syntax MLM

Java class

MLM calls Arden Syntax
interface calls

read
statement

Figure 3.19: Structure of the intermediate variable storage

Value storage
The value storage is initialized at the beginning of the inference process by evoking a Java
method that instantiates a new data structure within the Java class and returns a unique
id to the MLM. This id is needed for all operations on the storage and assures that parallel
inference processes have access only to the data of their patient. The initialization MLM
also calls those four MLMs that initialize the patient data, which have been described
earlier, as they need the id as well.

Intermediate variables—all data needed in more than one MLM—have to be stored at
the end of an MLM that altered shared variables and have to be read at the beginning of
the next MLM that needs the current value of such variables. Two MLMs provide these
functions (‘put variable’ and ‘get variable’ in figure 3.19); they can be evoked either with

72The documentation entry data-to-symbol conversion rules make use of the ‘is present’ operator that
returns automatically ‘false’ for unknown entities. Therefore the separation is due to technical reasons and
is kept only to point out the difference.

3.2. CADIAG-II/RHEUMA+ARDEN 123

one label (and the value of the variable if it has to be stored) or with a list of labels (and a
list of values); the latter accelerates the performance of the system. The MLMs are called
in a similar way to the data base cache MLM as shown in recent examples 43 and 44.

3.2.7 New operators

Two new operators ‘at least’ and ‘at most’ were needed to implement the logical com-
binations. As the usability of these two operators is not restricted to the CADIAG-II
knowledge base, they have been implemented as native Arden Syntax operators. The
addition of these two new operators to the aggregation operators of the Arden Syntax is
proposed.

3.2.7.1 at least of (binary)

The ‘at least of’ operator checks whether at least n of m elements of a list with truth values
are true. The list should consist of truth values, however other values can be contained,
too. The list is sorted descending, where ‘true’ is greater than ‘false’ is greater than any
other data type. If the first n elements are ‘true’, then ‘true’ is returned. If the nth element
is a fuzzy truth value or ‘false’, then it is returned as result. If this element is ‘null’ or of
any other data type, then ‘null’ is returned. If n is a fractional number, the lower integer
is used73.

<1:fuzzy> := at least <1:number> of <n:any-type>

Its usage is:true := at least 2 of (true, false, null, true);
false := at least 3 of (true, false, null, true);
null := at least 3 of (true, null, null, true);
F0.5 := at least 2 of (true, fuzzy 0.5, fuzzy 0.2, false);
F0.2 := at least 3 of (true, fuzzy 0.5, fuzzy 0.2, false);
false := at least 2 of (true, fuzzy 0.5, fuzzy 0.2, false);

3.2.7.2 at most of (binary)

The ‘at most of’ operator checks whether at most n of m elements of a list with truth
values are true. The list should consist of truth values, however other values may also
be contained. The list is sorted in descending order, where ‘true’ is greater than ‘false’ is
greater than any other data type. The at most of is implemented as ‘not (at least n + 1
of. . .)’.

<1:fuzzy> := at most <1:number> of <n:any-type>

Its use is: false := at most 2 of (true, false, null, true);
true := at most 3 of (true, false, null, true);
null := at most 3 of (true, null, null, true);

73Currently, the use of fractional numbers as arguments of operators that expect integer numbers is not
defined by the specification of the syntax. This is a working item of the HL7 Arden Syntax SIG, where a
general solution of this problem is being worked out.

124 CHAPTER 3. APPLICATION OF METHODS

F0.5 := at most 2 of (true, fuzzy 0.5, fuzzy 0.2, false);
F0.8 := at most 3 of (true, fuzzy 0.5, fuzzy 0.2, false);
true := at most 2 of (true, fuzzy 0.5, fuzzy 0.2, false);

3.2.8 Acknowledgements

In addition to the acknowledgements at the beginning of this work, special thanks go to
Dieter Kopecky for his commitment, assistance, and advice in understanding CADIAG-II.
His preparatory work on the internals of the original representation of the knowledge base
was essential for realizing the Arden Syntax representation of this knowledge base.

3.3 Glaucoma monitoring

The second project that used the fuzzy extensions of Arden Syntax was a glaucoma clas-
sifier that was part of a telemedicine project.

Monitoring glaucoma-related changes within the eye status of a patient requires the fol-
lowing steps: To decide whether the patient’s ophthalmic data set is indicative of critical
or suspicious situations by way of differential diagnosis, and to detect changes in the status
over time.

In recent work, a knowledge base founded on an artificial neuronal network and a set
of fuzzy control rules was defined in order to aid in differential diagnosis in this setting
[ZSW97]. The fuzzy control rules were implemented using Fuzzy Arden.

3.3.1 Introduction

According to the World Health Organization, glaucoma is one of the three major causes for
blindness worldwide [Who98]. Early detection of glaucomatous changes in the eye status
may help in the prevention of a significant risk factor. This purpose can be achieved
by measuring the ophthalmic parameters of a patient, which are monitored by an expert
system that classifies the data sets and generates alerts when registering data that indicate
a suspicious or critical status of the eye.

One means of classifying the eye status of a patient is simply to monitor the intraocular
pressure (IOP), which is frequently elevated in patients with glaucoma, as the ability
of the eye to drain the intraocular fluid is reduced. Whenever the current IOP value
exceeds a threshold value (the normal eye maintains an internal pressure of 12 to 22 mm
of mercury), such a system would issue a warning. However, a more sophisticated classifier
would include additional parameters in the classification process as medical experts do.

3.3.1.1 Structure of the classifier

The knowledge base for such an extended classifier was defined on the basis of an artificial
neuronal network (ANN) and a fuzzy rule set (FRS), as illustrated in figure 3.20. The
ANNs generate a classification of perimetry data sets, which is then used as one input
source for the FRS during the monitoring process.
Perimetry data describe the status of the visual field of the patient and are measured by
perimeter devices that detect the loss of light sensitivity at various stimulus points of the

3.3. GLAUCOMA MONITORING 125

Figure 3.20: Structure of the classifier

retina. As the patient presses a response button to report whether or not he sees a stimulus,
the results are subjective and generally uncertain. The ANNs that classify perimetry data
were trained with training sets defined by four medical experts. The classification ranges
from ‘normal’ or ‘pathological’ (but not glaucomatous) to ‘questionable’ or ‘probably’
glaucomatous.

Further input values for the FRS are estimations of papilla description parameters. These
are measured by observing the papilla during an eye examination, and consist of the cup-
disc ratio (CDR), the location of the excavation, and the difference between the CDR
values of the two eyes. Whereas the CDR and the difference are given as real numbers,
the location is given in linguistic terms such as ‘central’, ‘inferior’, or ‘superior’.

The last parameter that is used as input for the FRS is the intraocular pressure. This
value is measured in constant time ranges, for example daily or weekly. The remaining
parameters are measured once or twice a year at the beginning of a monitoring period
and are stored in the data base. Thus perimetric classification by the ANNs is done after
each new measurement, whereas the fuzzy rules have to be evaluated each time the IOP
is measured.

3.3.1.2 Technical structure of the monitoring application

The Arden Syntax knowledge base is used by the Java-based Arden Syntax rules engine
that is connected to the Siemens MedStage communication platform as described in chap-
ter 3.1.

Patients participating in the monitoring program are first examined by a medical expert
who transmits the observed perimetric values and papilla observations via the internet to
the MedStage data base. Then the patients have to measure their IOP at home using a
tonometric device with an attached communication unit. The frequency of measurements
depends on the particular case; it may range from several times a week to several times
daily. This tonometric device stores the measured values as well as the time stamps and
communicates them to the MedStage server where the values are stored in the data base.

Data base triggers fire an event that is communicated to the rules engine. The rules engine
evokes an Arden Syntax MLM that reads the new IOP values as well as all other needed
input values and evokes the fuzzy rules. Finally a message is generated and communicated
by the message server.

126 CHAPTER 3. APPLICATION OF METHODS

Figure 3.21: Structure of the monitoring application

3.3.2 Creation of the MLMs

The fuzzy rules set was initially modeled using the FuzzyTech74 software, which is a
commercial tool for the definition and evaluation of fuzzy control rule sets. The knowledge
base can be saved as an ASCII text file in a proprietary format and can additionally be
converted into a program code, such as a Java class file, which may then be directly used
by a software application.

Using the program code representation of the FRS would imply linking the code directly
to the program, which therefore would have to be recompiled every time the rules are
altered. A more flexible way of implementing the rules is to use the Arden Syntax rules
engine. A set of Arden Syntax MLMs has been generated, which represents the FRS, and
was used for the glaucoma monitoring program.

The FuzzyTech file format is based on a structured text format. A parser based on
JLex/Jay directly generates MLMs from a FuzzyTech project file. The parser has gener-
ated a total of 28 MLMs.

Linguistic variables are represented by 17 MLMs, including seven input variables, one
overall output variable, and nine intermediate variables. Each set of production rules is
represented by its own MLM; in all there are 11 production rules MLMs (figure 3.22).
Although the MLMs were created automatically by the parser, some linguistic variable
MLMs had to be modified and two additional control MLMs had to be written. One such
linguistic input variable is shown in figure 3.23.

Figure 3.22: Structure of the fuzzy control rule set

74http://www.fuzzytech.com

3.3. GLAUCOMA MONITORING 127

maintenance:
title: linguistic variable IOP;;
mlmname: LV_IOP;;
arden: Version 2flv;;
version: 1.0;;
institution: Siemens Medical Solutions;;
author: Sven Tiffe;;
specialist: ;;
date: 2002-01-03;;
validation: testing;;

library:
purpose: This linguistic variable represents an input value of

the TOSCA glaucoma classification rules.
It is used as input by the rule blocks: RB2, RB3, RB4.;;

explanation: ;;
keywords: ;;
citations: ;;
links: ;;

knowledge:
type: linguistic variable;;
values: ’normal’, ’increased’;;
input: read { %event.iop:date% };;
range: 0.0, 70.0;;
unit: ’mmHg’;;
sets:

’normal’ := linear((0.0, 1.0), (20.0, 1.0), (22.0, 0.0), (70.0, 0.0));
’increased’ := linear((0.0, 0.0), (20.0, 0.0), (22.0, 1.0), (70.0, 1.0));;

end:

Figure 3.23: Arden Syntax linguistic variable MLM: IOP

Modifications of the linguistic variable MLMs affected the fuzzification of the seven input
variables. As the FuzzyTech project file does not provide any information about data
sources for the numerical input values, all necessary information about data base queries
had to be added to the input slots.

The intermediate linguistic variables are the result of intermediate production rule sets.
Thus the input slot is already generated by the parser, as the variables simply reference
those MLMs that represent the intermediate production rule sets in their input slots. The
final result of the FRS is one output variable that is defined analogously.

In an Arden Syntax fuzzy control knowledge base structured like the present one, the
classifier can be called in two ways, namely by backward and forward inferencing.

The backward inference process is started by referencing the final output variable and
initializing it automatically75. The variable would then call the production rule MLMs
that are referenced in the input slot. These MLMs would initialize their linguistic variables,
which would have to resolve their input slots, and so on. Those input variables that are
not the result of intermediate rule sets have to define a data base query to retrieve the
initial numerical input values.

The forward inference process is controlled by an additional MLM that first has to query
75This presumes that every linguistic variable defines the input slot.

128 CHAPTER 3. APPLICATION OF METHODS

all required data from the data base and initialize the input variables manually by passing
the numerical values as arguments. Then every production rule MLM is evoked with input
variables as arguments. These MLMs return the intermediate variables, which are used
as input variables for the next production rules MLMs, and so on.

As some input parameters had to be prepared before they could have been used for the
linguistic variables, such additional MLMs have been used to create a forward inferencing
process. Each ophthalmic data set is classified twice, first based on values of the right eye,
then based on values of the left eye. If the patient only measured the IOP of one eye, the
contralateral data set is not classified. The result is coded in an XML message, which can
be used to generate a text message.

Chapter 4

Results and discussion

The Arden Syntax for Medical Logic Systems was extended by concepts of fuzzy set theory
and fuzzy logic, which can be used to represent medical knowledge with inherent vagueness.
The representation of such uncertain knowledge is based on fuzzified comparison operators
that define a gradual transition from ‘true’ to ‘false’ instead of returning crisp truth values.
Therefore, the data type of truth values was extended to represent, in addition to Boolean
values, such gradual truth values.

As truth values may be used to control the execution of the algorithm by conditional
statements, all related elements of the Arden Syntax have been extended. Fuzzy truth
values can result in the execution of statements and operators within different conditional
contexts that are a degree for the applicability of the current operations. As a result, data
may have different degrees of presence if they were created or altered within a conditional
context whose initial condition was only partly fulfilled.

Further, a new type of MLMs that represents linguistic variables has been defined. These
linguistic variables can be used, for instance, within the logic of data driven rules as part
of conditional expressions or as part of fuzzy control rules.

All extensions that were presented in this work have been discussed within the HL7 Ar-
den Syntax SIG (compare the notes about the current development of Arden Syntax in
the introduction). The group agreed that the representation of uncertain knowledge is
an important issue and that future versions of the Arden Syntax should include such
extensions.

The extended syntax was implemented by a Java-based rules engine. This engine was used
to realize two knowledge bases for computer assisted diagnoses and to evaluate them. The
first one represented the rheumatological knowledge of the CADIAG-II expert system, the
second one represented a glaucoma classifier. This chapter summarizes the evaluations of
the application of the methods and presents their results.

4.1 General aspects

The main goal of this work was to represent uncertain knowledge in the sense of vaguely
defined concepts. Such concepts are the result of an abstraction process where facts
are represented by symbols (for example by terms) and symbols are aggregated to other
more abstract symbols (for example, concepts such as disease definitions). When real-
world facts, such as observations or measurements, are described linguistically, data gets

129

130 CHAPTER 4. RESULTS AND DISCUSSION

mapped to terms. In the special case of describing numerical values, often a range of
values is assigned to a certain term. One example is the widely used term ‘fever’ that often
represents in common speech all elevated temperatures in a patient; more specifically it
may be classified into various types of increased temperature. Another example is the
concept of ‘adult’ that may depend on the context in which it is used.

In any case, to represent a category or concept by a formal syntax it is necessary to
compare facts to the conditions that separate the category from others. Most common
knowledge representation formats, which are based on a two-valued logic, support only the
definition of concepts by sharp boundaries. Therefore a fact either belongs to the category
or not, which works fine for unambiguous situations where the fact clearly belongs to a
certain category but which becomes unintuitive if facts are near to the borders of the
category. To model categories with vague boundaries fuzzy set theory was selected as the
concept to represent such uncertain knowledge, and fuzzy logic was used to reason with
fuzzy truth values.

Another aspect was the selection of a knowledge representation format that meets the
requirements of being used in the medical domain. The Arden Syntax for Medical Logic
Systems was explicitly designed to be used by medical experts, who do not have the knowl-
edge or experience of programmers. The Arden Syntax includes a crisp logic, therefore
the representation of knowledge with inherent vagueness by Arden Syntax was realized by
applying concepts of fuzzy set theory and fuzzy logic to the syntax.

One of the key aspects of Arden Syntax was the readability and simplicity of its syntactical
representation. Therefore, all syntactical extensions were chosen carefully in order to keep
the syntax intuitively readable. The terms which were finally used for the syntactical
extension were discussed over long periods with members of the HL7 Arden Syntax SIG
and other scientists from different universities. As long as the author or reader of the
MLM is familiar with the most basic concepts of fuzzy sets, the chosen keyword ‘fuzzified
by’ should be intuitively understandable. Recently this method of “fuzzified” comparison
operators has also been applied, independent of this work and Arden Syntax, on decision
criteria in clinical guidelines [JJC+01].

4.1.1 Fuzzy comparisons as model of vague categories

Determining whether a fact belongs to the category or not can be realized by comparing it
to the inherent conditions of the concept definition, where the boundaries of the concept
definition may be defined fuzzily. Such a comparison can be realized using Fuzzy Arden
Syntax comparison operators that yield a gradual truth value that specifies whether the
current fact meets the definition of the concept absolutely, partly, or absolutely not.

Example 48: (Fuzzy comparison)

The question whether a patient is adult or not can be formalized by the fol-
lowing Arden Syntax expression.

age => 17.8 years fuzzified by 0.4 years

A patient who is exactly 18 years old would neither be termed an adult nor
a child, whereas a patient who is 18 and a half years old would be termed an
adult in this example.

The core range of the elements that absolutely belong to the category (or, in other words,
which are absolutely compatible with the definition of the category) was defined in the last

4.1. GENERAL ASPECTS 131

example to begin at 18.2 years. The “fuzzification” of the comparison can be interpreted
as acceptable left or right hand variation of the input value compared to the core range
of the concept definition. In that example, only persons who are younger than 17.8 years
were defined as children. All other patients are in between and are termed ‘adult’ by a
degree between ‘true’ and ‘false’.

A subset of the Arden Syntax comparison operators have been extended by such a variation
that is represented by the keyword ‘fuzzified by’. These can be used to represent all
categories and concepts that are based on a numerical universe of discourse, by comparing
sample data values to the vague boundaries of the represented concept. Other concepts
that are not based on a numerical universe of discourse cannot be explicitly represented
by such fuzzified comparison operators. One way to represent such concepts would be to
implicitly define the degree of compatibility by the degree of presence of data values. A list
of strings, for example, could represent a set of non-numerical values that are compatible
with a certain concept. The degree of compatibility is then represented implicitly by their
degree of presence.

The result of fuzzy comparisons is a fuzzy truth value that necessitated an extension of the
Arden Syntax data model. Fuzzy truth values are an extended data type of the former
Boolean, whose classic values ‘true’ and ‘false’ are still usable, yet are only the border
cases of gradual truth values in between. Whenever a data value is compared to a fuzzily
defined category the resulting fuzzy truth value represents its degree of compatibility to
the category.

4.1.2 Use of fuzzy conditional statements

Conditional expressions that use fuzzy truth values execute their dependent operations
under a conditional context that depends on the degree of truth of the fuzzy truth value.
Such expressions are the ‘where’ statement, which selects data in dependence of a con-
dition, and statements for algorithmic program flow control (‘if-then’ statement, ‘while’
loop, ‘conclude’ statement).

If a conditional expression of type ‘if-then’ or ‘while’ has to execute one of two code blocks
and the condition yields neither ‘true’ nor ‘false’, then both blocks are executed in paral-
lel, both blocks under their corresponding reduced conditional context. This parallelism
follows the concept of the compositional rule of inference that mathematically models
uncertain ‘if-then-else’ decisions by considering both alternatives gradually by a degree
of applicability (compare section 1.3.4). The compositional rule of inference uses fuzzy
sets to compute the result, whereas Fuzzy Arden ‘if-then’ statements apply the concept
to single values (‘while’ loops are threatened analogously). If the conditional context is
reduced, all results of the operations within that context have a reduced degree of presence
and are termed ‘fuzzy data’.

If one variable represents in different conditional contexts different values of the same
data type, the final result is computed by calculating a weighted average (if the values
are numerical) according to the compositional rule of inference. If the results are not
numerical or of different types, the one with the higher degree of presence is chosen. This
method is comparable to the ‘execution with threshold’76.

76Lists are only interpreted as collection of data and not as own data entities. According to the specifi-
cation it appears to be not clearly defined whether lists have a primary time of their own; the source of the
primary time is time information stored in the data bases and delivered together with their corresponding
data as a result of queries. The time information is stored with the individual data values but is not

132 CHAPTER 4. RESULTS AND DISCUSSION

The application of these concepts, which were proposed by Zadeh [Zad73], to selected
elements of the Arden Syntax resolved the algorithmic problems that occurred, when the
Arden Syntax Boolean truth data type was extended to a fuzzy truth data type.

As truth values are not only used by conditional expressions as described earlier but also for
concluding an MLM, the concluding process was adopted to the use of fuzzy truth values.
In the sense of fuzzy rules it is now possible to create messages that can cover borderline
cases in a smooth way by including the degree of conclusion in their text body. Mainly, the
newly defined ‘terminate’ statement equals in its functionality the old ‘conclude’ statement
(except for executing the action slot even in the case of a ‘false’ conclusion). To reduce the
efforts of learning the differences between recent versions of the Arden Syntax and a new
one that supports the extensions proposed in this work it might have been appropriate to
keep the ‘conclude’ statement instead of redefining it and to use a new statement for the
extended concluding functionalities. However, from the point of view of intuitive labels,
the termination of the logic by ‘terminate’ seems to be more intuitive.

The influence of the extended truth data type on the entire syntax is rather high. Fuzzy
truth values influence conditional expressions, which influence the creation and modifica-
tion of data which therefore can be “fuzzy” and have to be handled in some way by all
other operators. An alternative solution to handle fuzzy truth values in MLMs would have
been to define conditional statements only to work on crisp truth values and to generate
error messages if fuzzy truth values would have been used. That would mean that the
syntax would produce, but not process, fuzzy truth values.

Such a strategy would have avoided the significant functional extensions that were applied
to almost every element of the Arden Syntax, as no distinction between ‘crisp data’ and
‘fuzzy data’ would have been made. On the other hand, the usability of the fuzzy truth
values and the integration of vaguely defined concepts in the decision algorithm would
have been significantly decreased, as shown subsequently: Such a separate handling of
fuzzy truth values may be compared to the approach of modeling the fuzzy extensions by
separate MLMs.

4.1.3 Native extension of the syntax versus use of MLM library

The functionality of the native extension of the Arden Syntax might have been achieved
by an alternative approach as well. Inspired by an early presentation of this work at the
HL7 working groups meetings, Mike Jones from Thomson Micromedex77 developed an
MLM that provided the mathematics to use fuzzy comparisons of numbers. This MLM
can be called with a set of arguments that include the input value, the crisp thresholds
and the ranges of acceptable variation. The result is a numerical value from 0 to 1 that
exactly represented the fuzzy truth value that would have been the result of the natively
extended comparison operator.

This approach could be extended by other MLMs that cover other aspects of the fuzzy
concepts presented before and would offer an elegant way to extend the functionality
by a MLM library without touching the syntax. However, this approach had certain
disadvantages compared to the native extension. Expressions such as

if bp_value is within 100 fuzzified by 20 to 140 fuzzified by 10 then

associated with a list. Following this method to handle lists as data container, they have neither a primary
time nor a degree of presence (or, always a degree of presence of 1.0).

77http://www.mdx.com

4.1. GENERAL ASPECTS 133

can be understood more intuitively than expressions that implement the same functionality
by an MLM call:

result := call fuzzy_set with bp_value, 80, 100, 140, 150;

Here the numerical variable ‘result’ would represent a number that, in turn, represents
the fuzzy truth value. In contrast to the extension of the truth data type by fuzzy truth
values, this numerical truth value representation cannot be processed by the fuzzy logical
operators and cannot be used by other operators or statements that require truth values
as arguments. For example, any fuzzy logical expression would have to be implemented
as separate MLMs too:

result := call fuzzy_or with res_condition1, res_condition2;

Complex fuzzy logical expressions may result in hardly understandable sequences of MLM
calls. Further, numerical fuzzy truth values could not be mixed with truth values by
logical expressions.

Conditional expressions could not be used with the numerical representations of fuzzy
truth values when using the “fuzzy set MLM”. Instead of writing

if age is greater than 18 fuzzified by 2 years then
...

endif;

one would first have to compute the numerical fuzzy truth value and then define a crisp
threshold for the fuzzy truth value:

result := call fuzzy_set with age, 18, 20, 0, 0;
if result >= 0.8 then
...

endif;

Such conditional statements would, however, behave crisply. The gradual degree of pres-
ence of variables within the conditional context could then be implemented by a second
variable or by two parallel lists (if more than one variable has to be handled) that would
represent this additional attribute. The concept of fuzzy data and conditional contexts
could hardly be implemented without greater effort.

result := call fuzzy_set with age, 18, 20, 0, 0;

/* result >= 0.8 */
dose1 := 15;
dose1_presence := result;

/* else */
dose2 := 25;
dose2_presence := 1-result;

dose := call nu_defuzzification with (dose1, dose1_presence),
(dose2, dose2_presence);

134 CHAPTER 4. RESULTS AND DISCUSSION

4.1.3.1 Linguistic variables

Linguistic variables can be used to define rules by using linguistic concepts rather than
numerical values. The use of linguistic variables for conditional statements makes it pos-
sible to define expressions that are similar to natural language, and thus fulfill one of the
rationales of the Arden Syntax.

Furthermore, the extensions allow fuzzy control rules to be used for more complex tasks
such as computer-aided diagnosis or therapy. Fuzzy control systems can be implemented
by a set of MLMs which include production rules, linguistic variables, and control MLMs.
Such a system has been presented in this work and is discussed later.

If an Arden-Syntax-based knowledge base includes a set of common linguistic variables,
they could be used without the need to define separate data base queries to read the needed
facts from the data base. However, the curly braces problem arising from non-standardized
definitions of data base access expressions is not resolved by the use of linguistic variables.
This problem affects the read statements within the linguistic variable input slot as well
as those within the data slot of classic Arden Syntax MLMs.

The use of linguistic variables instances differs from the use of regular Arden Syntax data
types in two aspects: First, Arden Syntax has no type declaration—every variable can be
used with any data type without the need to define them separately. By using linguistic
variables, the variable has to be declared within the data slot first, as the term definitions
have to be known before any assignments are valid. Secondly, in contrast to a regular
variable, multiple assignments to one linguistic variable will not overwrite the old values.
Instead each value will be assigned by a certain degree which depends on the fuzzy truth
value of the context, for instance the condition of the if-then statement.

Linguistic variables do not make direct use of the first part of extensions (fuzzy comparisons
and fuzzy data) but their use by rule MLMs does not provide many benefits if they cannot
be used within fuzzy if-then statements, such as:

if blood_glucose_level is ‘significantly increased’ then

Therefore, to use linguistic variables, native extensions are highly recommended.

4.2 Implementation of a rules engine

A runtime environment (rules engine) that is able to read, manage, and execute MLMs
and can be connected to an information system by flexible interfaces was implemented.
The rules engine was tested by a set of test MLMs and used in two projects.

4.2.1 Compilation of Medical Logic Modules

Recent implementations of expert systems based on Arden Syntax used different ap-
proaches to execute MLMs by translating them into machine-executable commands of
any kind. At the Columbia Presbyterian Medical Center MLMs where translated into
pseudo-codes (an intermediate format between programming languages and an executable
machine code) which where interpreted by an interpreter [HCJC92]. Other systems trans-
lated MLMs into other high-level knowledge representation formats which were used by
their execution engine [Pry94, JMB94]. An Arden Syntax compiler of the University of

4.2. IMPLEMENTATION OF A RULES ENGINE 135

Giessen directly translated Arden Syntax MLMs into PL-SQL code that could be directly
executed within an Oracle data base [Taf99].

A different approach is employed by systems that compile MLMs into a different program-
ming language. Such cross-compilers that generated C++ program code have been realized
by the Linköping University [Joh97,Gao93] and by IBM [KR94]. A similar approach that
used Java as the target programming language has been realized at the Henri Mondor
Hospital in France [KCH+02].

These cross-compilers essentially use the same process. First, an MLM that is to be inte-
grated into the system is translated into the programming language of the goal platform.
Then this program code is also compiled, this time by the native compiler that is provided
for the particular programming language, into directly executable program code. This
code has to be integrated (linked) into the system.

The Linköping approach translates one MLM to one C++ class, the French approach
translates it into one Java class. Both approaches partly use pure C++ or Java expressions
and partly a library of methods that provide the functionalities of more complex Arden
Syntax operators, such as the ‘max’ operator that selects the greatest element of a list. As
Arden Syntax uses, in contrast to C++or Java, dynamic data typing, all MLM variables are
encapsuled by objects of a special class that is part of the particular class library of both
approaches, and that represents a union of all Arden Syntax data types. To be able to use
such objects with common C++ operators, such as ‘==’ (is equal), these operators were
overloaded78. Java does not allow one to overload operators but only methods; therefore
method calls replace such operators.

maintenance:
title: Prescription without PT test;;
filename: pt_601;
...

knowledge:
...
data: Prothrombin_percentage := read last

({} where it occurred within the past 12 hours);
new_weekly_dose := read last
({} where it occurred within the past 12 hours);
signature := event {};;

evoke: signature;;
logic: if not (Prothrombin_percantage is present) and

(new_weekly_dose is present) then
conclude true;

else
conclude false;

endif;;
action: write "No new dose must be given without a new PT percentage!";;

end:

Figure 4.1: MLM representation by cross-compilers: source MLM

For these approaches the given examples showed a high similarity between the contents of
the Arden Syntax logic slot and its representation by the program class. Figures 4.1 and

78To overload means that different functionalities are assigned to one operator or method, which are
selected depending on the data types of the arguments. For example, when comparing the string constant
“foo” with a C++ string variable, the == operator would use its common functionality. If the variable is not
a C++ string variable but an Arden Syntax variable representing an Arden Syntax string, the overloaded
operator would still know how to handle it by using a different method to compare the values.

136 CHAPTER 4. RESULTS AND DISCUSSION

4.2 show one example taken from [GJS+93]. The first figure shows the source MLM that is
translated into one C++ class shown in the second figure79. The result looks structurally
similar to the source Medical Logic Module.

0: #include "mlm_to_c++.hxx"
1: mlm_type &pt_601{
2: // Declaration of variable
3: mlm_type Prothrombin_percentage;
4: mlm_type new_weekly_dose;
5: mlm_type signature;
6:
7: mlm_type NULL_TYPE;
8: BOOLEAN_TYPE conclude = false;
9: mlm_type action_message;
10:
11: //data slot part
12: Prothrombin_percentage.read_last(1, "..", "it occur within_the_past(12 hours)");
13: new_weekly_dose.read_last(1, "..", "it occur within_the_past(12 hours)");
14:
15: // evoke criteria in <Evoke_table> file
16:
17: // logic slot part
18: while (1) {
19: if (!(Prothrombin_percentage.present()) && (new_weekly_dose.present())) {
20: conclude = true;
21: break;
22: } else {
23: conclude = false;
24: break;
25: }
26: break;
27: }
28:
29: // action slot part
30: if (conclude) {
31: // do action
32: action_message = "No dose must be given without a new PT percentage! (ref:pt_603)";
33: write (action_message);
34: }
35: NULL_TYPE = null;
36: return NULL_TYPE;
37: }

Figure 4.2: MLM representation by cross-compilers: result

First the required class library has to be included before the current class is defined as
MLM data type labeled by the MLM filename80 (lines 0 and 1). All local variables have
to be defined before they can be used (lines 3 to 9). As mentioned earlier, the C++

class uses a special data type ‘mlm type’ to encapsule MLM variables that can be of
dynamical data type. When comparing both representations one can see where operators
were overloaded (for instance the comparison operators in lines 20 and 23) or where Arden
Syntax functionalities have been realized by separate methods within the class library (for

79A translation into Java classes that is based on the use of a class library probably would differ only in
marginal parts. Further, both examples were slightly reformatted.

80The MLM example is based on Arden Syntax version 1 where the ‘mlmname’ slot still was termed
‘filename’ slot.

4.2. IMPLEMENTATION OF A RULES ENGINE 137

instance the read last function in lines 12 and 13 or the ‘is present’ operator in line 19).

As the next step the resulting C++ class must be compiled into executable code and
linked to the system program code. During the pre-compilation, evocation information
are also collected and stored externally (line 15). The system then uses the information
to evoke the required MLMs [JW92, JB93]. Even if Java does not require to explicitly
link the Java code into a program (it can be accessed automatically if it is located in a
predefined name space (classpath), the process of integrating the translated MLM into the
system is similar.

In contrast to such Arden Syntax execution environments that cross-compile MLMs to a
high-level programming language, the rules engine presented in this work interprets the
MLMs during runtime. A part of the last example is shown as an object tree in figure
4.3. The figure shows the representation of the logic and action slots in the knowledge
category. Objects such as ‘KnowledgeCategory’, ‘StructuredSlot’, or ‘IfThenStatement’
are linked by references such as ‘logic’ or ‘first expr’. Constants include their value, such
as the ‘true’ ‘ArdenBoolean’ constant. This Java object tree representation of MLMs also
required a class library which provides the required object classes.

TerminalStatement

condition
Not

expression
And

expr1
IsPresent

id
Identifier

expr2
IsPresent

id
Identifier

Conclude

label: ’new_weekly_dose’

label: ’Prothrombin_percentage’

expression

Conclude
expression

ArdenBoolean
value: true

ArdenBoolean
value: false

fir
st

_e
xp

r

StructuredSlot

StructuredSlot

fir
st

_e
xp

r

IfThenStatement

Write
expression

ArdenString
value: No new dose must be given without a new PT percentage!

lo
gi

c

ac
tio

n

KnowledgeCategory

ne
xt

_s
ta

te
m

en
t

ne
xt

_s
ta

te
m

en
t

el
se

_b
lo

ck

if_
bl

oc
k

TerminalStatement

Figure 4.3: Example MLM representation by Java object tree

This representation of the MLM is naturally not designed for a human reader; it is used
during the actual runtime by the rules engine81. The step of an intermediate represen-
tation by another programming language has been avoided in this approach; the user or
knowledge engineer only has to deal with Arden Syntax MLMs in their plain text repre-
sentation.

The cross-compilation approach was discussed as an option for the implementation of the
rules engine in an early stage of this work. However, the object tree approach was chosen
for reasons of flexibility and maintainability.

81However, a semantic-net-like representation of the internal object tree representation seems to be well
readable for humans as well.

138 CHAPTER 4. RESULTS AND DISCUSSION

The flexibility mainly concerns loading MLMs into or unloading them from the running
system. As the MLMs are represented by the object tree approach as internal data struc-
tures, they can be easily loaded or unloaded during runtime without any major effort.
Only the evocation tables that define which MLMs listen to which events have to be up-
dated. No additional tools such as an external compiler have to be run. In contrast, both
cross-compilation approaches require the evocation of an external compiler and loading the
newly compiled classes either before the engine starts up (direct linking by C++) or during
runtime on program code level (by a customized dynamic Java class loader). Therefore,
both cross-compilers modify the program code (or class scheme) of the rules engine, while
the presented only one modifies internal data structures.

In terms of maintainability it is interesting to note, how easily the Arden-Syntax-relevant
parts of the rules engine can be updated or modified. The class scheme of the presented
rules engine groups all elements of the Arden Syntax into one package (separated by
sub-packages) where every functional element such as a slot, an operator, or a statement
is represented by one class. The individual functionality of one such element is basically
implemented in the evaluation method. The compilers only use the constructor methods of
the classes to build the object tree. The parsing process that was used to read and analyze
MLMs was separated into two parts. The basic Arden Syntax parser and lexer built a
Java object tree that represented the first and second category of the MLM and included
the last one as source text. After evaluating the version of the MLM, the corresponding
parser (either version 2, version 2 with fuzzy set extensions, or additionally with linguistic
variables) was evoked, which analyzed the last category. As all extensions only affected
the knowledge category (and it may be assumed that further extensions will also do so),
this method kept the single versions of parsers separately maintainable.

Therefore, changes in the syntactical part of the syntax require alteration of the parsers
while changes in functional parts require alteration of the corresponding classes. The
cross-compilers also use a class library that provides Arden Syntax specific functionalities;
thus the maintainability is comparable.

4.2.2 Java class model

The class model that was used to represent Arden Syntax MLMs as an object tree was
modeled according to the structure of the syntax defined by the specification [Hls99]. An
MLM is represented by one object that references three category objects, which reference
a set of slot objects, and so on. Functionally related elements have been grouped into Java
packages that were partially named according to the corresponding sections in the spec-
ification document. For instance, the package ‘operators’ includes only operator classes
that are grouped into sub-packages such as ‘aggregation’ or ‘logical’.

First a Java class model for classic Arden Syntax version 2 was created. Then the fuzzy
extensions were applied to the classes. From the viewpoint of the class model, this only
required the addition of some new classes such as the defuzzification operator or a class
that provides some fuzzy mathematics, which have been grouped into a separate package,
and some new classes for the representation and handling of linguistic variable MLMs.

The extensions in terms of functionality had to be applied to every single class. Default
extensions, such as the degree of presence of data or the default handling of the degree of
presence, were simply implemented within the abstract root classes of operators or data
types. For example, the root class of Arden Syntax data types was the abstract class
‘ArdenData’. This class defined basic properties of data such as the primary time. All

4.2. IMPLEMENTATION OF A RULES ENGINE 139

other data types inherited this class and therefore implemented the primary time as well.
When the root class had been extended by the degree of presence all other data types
were extended simultaneously.

The modular concept of the runtime part of the rules engine should allow easy connection
to other information systems without major effort. The MedStage specific classes are
limited to one package that includes 22 classes (of about 280 classes in sum) that implement
all interfaces. As they are realized using the Java ‘interface’ technology (that only defines
the functionality of the interfaces, not their implementation) they could be easily replaced
by other classes that interface to other systems.

4.2.3 Performance

An important aspect of executing MLMs is the time needed for execution. In addition
to the performance test of the bigger knowledge bases used in the two projects described
in the next section, the performance was measured by three MLMs, running the rules
engine on a common personal computer with a Pentium III CPU at 800 MHz and 512 MB
memory under MicrosoftTM WindowsTM 2000.

The time needed for the execution of one MLM was measured by creating a time stamp
using a function of the Java-3D class library that provides a method to obtain the actual
time. According to the information of the package the resolution is less than 1 ms (279
ns). Time stamps are created when the execution of the knowledge category (the data
slot) is started and one, when the last statement of the action (or logic) slot is terminated.
Table 4.1 shows some results of the performance tests in milliseconds (ms).

Table 4.1: Performance of the rules engine

mlm average [ms] std. dev. maximum [ms] minimum [ms]
bp 1 559 83 661 450
bp 2 158 26 210 140
bp 3 55 22 91 30
test 1 549 106 671 421
test 2 141 13 161 120
bmi <1 — — —

The first MLM retrieved a set of patient-specific blood pressure values from the data base,
evaluated them, and sent a message by email. This MLM is referenced as ‘bp 1’ in the
table. The second entry shows the performance of the same MLM but without sending the
result as an e-mail. The third entry ‘bp 3’ shows the performance of the MLM without
sending an e-mail and without data base access (instead the data are constructed as a
constant list in the MLM). Sending the e-mail required the maximum time compared to
the rest of the execution. On average the transmission of the e-mail took about 400 ms.
Additionally the data base access required about 100 ms.

The next MLM that was tested for performance was one of the test MLMs which includes
about 150 operations on aggregation operators plus a parallel result list and the comparison
of the lists. The first version ‘test 1’ communicated the result as an e-mail while the second
one did not. Again the average time difference is about 400 ms for a plain, short text.
The pure execution of the MLM required on average 141 ms.

140 CHAPTER 4. RESULTS AND DISCUSSION

The last MLM calculated the body mass index (bmi), which is computed according to
the gender, height, and weight of a person. This information is entered in a web-based
form; the MLM is evoked via the direct evocation servlet. The results are returned as an
XML file to the web browser which transforms them into HTML. The time needed for the
execution of the MLM could not be measured as the time stamps were identical.

Recent studies identified the data base access as a bottle neck [HCJC92,JB93]. To reduce
the communication overhead for retrieving small amounts of data from the data base the
rules engine supports, based on the MedStage event system, the transportation of data by
events. For example, while monitoring the blood pressure of a patient it is possible to link
the data to the event that indicates a new pressure value instead of querying it separately.

As shown, another bottle neck may be the transmission of the results if transport layers
with a significant protocol overhead are used. The more complex communication technolo-
gies are involved (requiring complex protocols for security reasons), the more negligible is
the time needed to execute the pure decision logic, at least when dealing with rather small
MLMs.

In summary, the results of MLMs are produced instantly. Considering the fact that it is
purely an evaluation platform, the rules engine reacts with high performance. As every
MLM is executed by an own thread, parallel running MLMs should benefit from multi
processor computers where the load can be balanced on the single processors. Comparisons
with MLMs that are directly cross-compiled to Java classes is difficult since the MLMs
used for these performance benchmarks are different from those used by the French group.
Their results published in [KCH+02] range from less than 5 ms for the execution of one
MLM without data base access, to 76 ms for one MLM with read access to 3 data base
tables.

Although the test MLMs of their work and the present study cannot be directly compared,
the time needed for the execution of cross-compiled MLMs without data base access seems
to be similar to the time taken for the “interpretation” of the corresponding Java object
tree. The data base access of the MedStage systems seems to require more time, but as
MedStage was designed for tele-medicine applications it includes sophisticated security
concepts such as the authentication and encryption of data that require additional time.

4.2.4 Event handling

Events can be received by the rules engine in different ways; in the present work commu-
nication over JMS was mainly used. Events are defined by their unique name; therefore
event mappings simply consist of this identifier. Events can be fired by any system that is
connected to the JMS, such as data base triggers, devices, or user interfaces. In addition
to the rules engine other systems also could receive such events. This event system was
easy to implement as different vendors support JMS and provide communication solutions
that are easy to use.

This event model causes all events to be processed asynchronously, as:

• Data base triggers must be asynchronous as current transaction should not be in-
terrupted or held by trigger evaluation and event evaluation.

• System failures during the execution of the engine should never interrupt current
data base transactions or crash systems which depend on the current operation.

4.2. IMPLEMENTATION OF A RULES ENGINE 141

• More than one software component could listen for events and the evaluation of
the events could take different lengths of time. The communication is therefore
unidirectional.

Thus all components of the event system and the event evaluation (the execution of rules)
are independent threads; especially each individual execution process of an MLM runs
as an own thread. In some cases a synchronous execution of rules might be needed,
for example to analyze contraindications before ordering drugs or for interactive systems
where the system should react instantly to user actions.

One issue that affects both, event handling and the overall execution of an MLM is the
identification of the patient who is associated with the current MLM. The examples defined
in the appendix of the Arden Syntax specification document avoid direct references to a
specific patient in their messages and seem not to include any patient-related identifiers
in their data base queries.

The current engine provides, as syntactical extension, a keyword ‘patienid’ that can be
used in the data, logic, and action slot. By doing so it is possible to define data base queries
that return only the data related to the current patient. Furthermore, it is possible to
include the patient identification in outgoing messages.

4.2.5 MLM authoring

In recent implementations of Arden-Syntax-based systems, the scope included not only
the execution of rules but also aspects like authoring and management. In addition to an
MLM editor (which we implemented as a syntax highlighting scheme for Ultra Edit82),
Gao used an MLM pretty-printer which (re-)formats MLMs, as well as an MLM manager
for maintaining and linking MLMs to the system [MAG+91]. The present rules engine
partly provides such aspects, as single modules can be reloaded or erased from the system
during runtime. Furthermore, MLMs can be displayed by an HTML web site.

The Java classes that represent MLMs provide methods for each class to build an XML
representation of the current MLM. This representation does not follow the proposals given
in the Arden Syntax SIG, as it was not meant to be an exchange format for MLMs but just
an output format that would be easily converted to other formats, such as HTML. The
XSLT style sheet that was implemented for this specific conversion produced an HTML
file that additionally made use of CSS style sheets. Therefore, to alter structural parts
of the HTML output, the XSLT file would have to be modified: In order to alter its font
shapes or colors, the CSS file would have to be altered. However, changes or extensions
of the program code would not be required for these tasks.

Many editors published in recent work were based on forms which concealed the basic
structure of an MLM behind a set of text input boxes [BE97, GSA+92]. By providing
editors and graphical user interfaces, the representation of medical knowledge could be
adapted to the skills and interests of the current user. For those, who are not experienced
in writing MLMs (or generally using a formal syntax or programming language) it may be
more productive when they are supported by a graphical environment. More skilled users
may be faster when working directly on the syntax.

82All MLMs which were not created automatically were written with the UltraEdit editor
(http://www.ultraedit.com), for which a syntax highlighting scheme was defined (appendix E). The scheme
was kept ascetic, but was found to be useful for enhancing the clarity of an MLM.

142 CHAPTER 4. RESULTS AND DISCUSSION

4.3 CADIAG-II/RHEUMA+Arden

The CADIAG-II/RHEUMA knowledge base was successfully converted to a Fuzzy Arden
Syntax representation, modeling an inference process that is close to the one used by
the original CADIAG-II system. Two different approaches were adopted to achieve the
conversion; the two approaches differ in terms of performance and readability.

The modular approach defined each entity, such as a diagnosis, a symptom, or a
combination, by one individual MLM. The inference process is started at the more abstract
level of the knowledge base by calling all MLMs that define a diagnosis (compare figure
1.3 on page 17). The MLM calls continue until the lower level of abstraction (the data-
to-symbol conversion) is reached. This level rates the symbolic representation of findings,
returns the results to the symptom MLMs, which return their ratings to the next higher
level of abstraction, until the level of diagnoses is again reached. As entities influence
other entities on the same level of abstraction, and changes of one entity can therefore
influence another that was computer earlier, the top-level call of the diagnoses is repeated
until their ratings are constant.

The compact approach modeled the single inference steps used in CADIAG-II by in-
dividual MLMs, aggregating the knowledge nuggets of all entities that are used in the
corresponding inference step. For example, a disease definition is defined by relationships
to symptoms, to other diseases, and to symptom combinations. In this approach the in-
formation was separated according to the inference process into one MLM that defines
all symptom-to-diagnosis relationships, one MLM that defined all diagnosis-to-diagnosis
relationships, and one MLM that included the diagnosis-to-symptom-combination rela-
tionships (figure 4.4).

1

2

3

relationship tocomposed of inference step

symptomsymptom symptom

...

...

symptom2diagnosis

diagnosis2diagnosis

diagnosis2sympt.−comb.

sympt.−comb. ...

diagnosis diagnosis
2

1
3

Figure 4.4: Distribution of related knowledge by the modular approach (left) and the
compact approach (right)

4.3.1 Performance and readability

Aspects of performance and readability are discussed together as the readability of large
Arden Syntax knowledge constructs seems to be reciprocally proportional to the perfor-
mance of the inference process. All performance tests were run on the Arden Engine
described in chapter 3.1.

In terms of readability the modular approach had advantages over the compact one. For
example, the definition of a diagnosis aggregated all knowledge about the specific entity,
such as relationships to other entities, in one individual MLM. The degree of evidence
and the degree of occurrence of each relationship to another entity were defined separately

4.3. CADIAG-II/RHEUMA+ARDEN 143

together with the name of the entity, which has been included as a comment. As every
knowledge nugget could be localized easily, a knowledge engineer or physician would have
been able to make single corrections and improvements in a convenient, direct way.

On the other hand, the structure of the modular approach had the disadvantage that enti-
ties referenced by many entities may be computed redundantly. Redundant computations
were avoided by a mechanism that prevented calling those MLMs that had already been
evaluated. This mechanism stored for each iteration of the inference process the names of
the entities that were already computed (that is, the name of the corresponding MLM).
Whenever such an MLM had to be called it checked whether the name was already stored
in the list or whether the computation was still required.

The compact knowledge base broke the aggregated knowledge of entities, like symptoms
and diagnoses, by separating it into single nuggets that are used by different steps of the
inference process and therefore defined within different MLMs. For example, diagnoses
are defined by three different MLMs, as the relationships to symptoms are evaluated first,
then the relationships between diagnoses, and then additionally between diagnoses and
symptom combinations. Besides, the MLMs aggregate the knowledge nuggets of different
entities into one MLM.

One advantage of the modular system is its flexibility in terms of maintenance. By using
the compact MLMs an entity whose definition needs to be partly changed must first be
located within the MLM, then modified, and finally the entire MLM has to be reloaded.
When using the modular knowledge base only the MLM that defines the entity is modified
without affecting the rest of the system. However, compared to the original representation
format by data base tables, both approaches provide a more easy maintainable alternative
that could further be easily parsed and converted into other formats.

The amount of MLM calls of the modular approach slowed the system significantly. As the
development of this approach was terminated before a complete inference process could
be tested, the approaches cannot be directly compared by the time needed for a complete
diagnosis. It showed the following: the higher the compactness of the MLMs, the faster
is the inference process. On average, one complete inference process by the compact
knowledge base needs about 19.9 seconds, including the data-to-symbol conversion. The
early modular approaches required more than three minutes to complete approximately
one half of the inference process. The original CADIAG-II system needs on average 2
seconds for the data-to-symbol conversion and 3 seconds for the inference process.

4.3.1.1 Use of native Java methods by interface statements

The need to access huge amounts of data base values and to share the ratings of all entities
among the individual MLMs affects both the modular and the compact approach.

Before any data-to-symbol rule can apply, all required data have to be retrieved from
the data base. The first modular versions of data-to-symbol MLMs implemented every
data base query individually. As every individual query transferred only a few bytes
and caused a significant overhead of communication (including all security issues such as
verification), the entire retrieval of patient data was unacceptably slow. The performance
was significantly improved by using a data base cache mechanism that reads all patient
data by a few queries without losing the readability of the single data-to-symbol MLMs.

Data that were cached during the beginning of an inference process must then be available
for every data-to-symbol conversion rule. Similarly, ratings of entities have to be available
for every rule of the knowledge base. A simple way to share data by two or more MLMs

144 CHAPTER 4. RESULTS AND DISCUSSION

is to pass it along as arguments of an MLM call or to return it as a result of such a call.
Sharing an unknown number of values could be realized by passing two lists that can
store an arbitrary amount of data, where the first one stores all labels of the variables
(the identifiers) and the other, the corresponding values. To look up one specific value,
the position of its identifier has to be determined in the first list before the corresponding
value in the second list can be accessed.

During each inference process the knowledge base has to handle about 2500 variables (2467
entities such as symbolic findings, symptoms, diagnoses, or scores) and about 1800 data
base values (1305 documentation entries, 58 laboratory values, 11 crisp classifications,
and 408 further findings); accessing one individual value by searching the label in a list
and reading the value from the other would require too much time. In the best case the
searched identifier is one of the first elements of the list; in the worst case the entire list
has to be processed.

Performance tests showed that searching five labels (selected randomly) from a list of
nearly 2500 elements required in the best case less than 1 ms and in the worse case about
500 ms. However, in the beginning of the inference MLMs, more than only five values
have to be mapped to local variables. For example, mapping all needed variables for the
symptom-to-diagnosis inference step took almost 80 seconds (1023 values being mapped)
and looking up values needed by the intermediate combinations took about 24 seconds
(327 values being mapped).

Therefore the data base cache and intermediate variables were realized using external
Java methods accessed by a set of MLMs which use the Arden Syntax interface statement.
This application significantly enhanced the performance of the system. Regardless of the
number of queried values, the MLM terminated within a maximum of 5 ms. The MLMs
used for comparing both methods are shown in the appendix C.5.3.

As the Java interface is capsuled by a set of MLMs, the readability of the MLMs is not
significantly affected. However, the use of the Arden Syntax interface methodology reduces
the portability of the knowledge base, as interfaces highly depend on the rules engine used.
On the other hand, as long as the destination system supports Arden Syntax interfaces, the
data base cache and intermediate variable storage could be implemented by the destination
system, and the knowledge base could be transferred to another institution.

Another way to achieve better performance of the intermediate variable implementation
would be to extend Arden Syntax in such a way that complex objects can be handled. If
Arden Syntax would support objects—and currently the syntax is being developed in this
direction—binary trees could be realized to reduce the time needed to localize one data
object in a huge mass of objects.

4.3.1.2 Implication and inference operators

A further source of for potential performance problems was the implementation of the im-
plication and inference operators as individual MLMs. Whenever a relationship is defined
from one entity to another, the implication operator has to be executed to compute the
influence of the implication on the current entity. This is done by calling the implication
MLM with the value of the influencing entity and the degree of evidence and occurrence
of the relationship. Then the operator returns the rating of the current entity that would
be the result if the relationships was the only one defined for it. If the entity has already
been rated or if other relationships are defined, these intermediate results are aggregated
by the inference operator to a new rating for the current entity.

4.3. CADIAG-II/RHEUMA+ARDEN 145

If an entity defines 335 relationships to other entities, the implication operator has to be
called 335 times with the value and the two degrees that characterize the relationship
as arguments. To speed up this calculation the operator was extended to accept lists of
entities and lists of the degrees of evidence and occurrence as arguments and to compute
the individual results internally in a loop. The result is returned also as a list with the
results of the single implications. Therefore the entity described before has to call the
operator only once.

The construction of the three lists can be implemented in two ways. The list can be
constructed by first concatenating all values of the evidences to one list, then all corre-
sponding degrees of evidence to another list, and at last by concatenating all degrees of
occurrence to the last list.

Example 49: (Construction of the arguments for the implication operator)

impValue := SF___34, SF___35, SF___36, ...
impEvidence := fuzzy 0.1, fuzzy 0.05, fuzzy 0.05, ...
impOccurrence := fuzzy 0.07, fuzzy 0.4, fuzzy 0.39, ...

When dealing with a small set of related entities, this definition is still somehow readable,
but as soon as the structures cannot be represented in one line anymore it becomes very
expensive to search for corresponding pairs. In the applied Fuzzy Arden representation
the lists are constructed this way, as lists with constants (thus the degrees of evidence
and occurrence) can be easily optimized during the compilation of the MLM: Instead of
evaluating all list concatenations during the runtime, the result that is constant and does
not depend on the individual execution of the MLM can be already computed during the
initial compilation. This optimization works as long as no variables are included in the
expressions.

Alternatively, constructing the lists in single steps for each entity and including their
names, for instance as comments, could result in a more clear definition of the relationships
as shown in the next example.

Example 50: (Alternative construction of the arguments for the implication operator)

/* ONSET OF DISEASE, BETWEEN AGE 16 AND AGE 29 */
impValue := SF___34;
impEvidence := fuzzy 0.1;
impOccurrence := fuzzy 0.07;

/* ONSET OF DISEASE, BETWEEN AGE 30 AND AGE 50 */
impValue := impValue, SF___35;
impEvidence := impEvidence, fuzzy 0.05;
impOccurrence := impOccurrence, fuzzy 0.4;

/* ONSET OF DISEASE, AFTER AGE 50 */
impValue := impValue, SF___36;
impEvidence := impEvidence, fuzzy 0.05;
impOccurrence := impOccurrence, fuzzy 0.39;
...

The code could still be optimized during the compilation of the MLMs even if it would
require—considering the pre-construction of lists that contain only constants—a more
sophisticated algorithm that is able to detect the use of a list variable within the algorithm.
List constructions which are implemented by one sequence of list concatenation operators

146 CHAPTER 4. RESULTS AND DISCUSSION

can be localized more easily. In the last example the list concatenations that belong
together would have to be localized over a discontinuous sequence of statements that use
the operators within their arguments.

4.3.2 Inference results

The base for the evaluation of the inference results was a printout of inference results
for 116 patients. On approximately 2800 pages, for each patient detailed information
and explanations are given about ratings of all positively or negatively rated symptoms,
intermediate combinations, symptom combinations, and diagnoses.

As the comparison of the electronic results to these printouts is very time consuming, parts
of the results were manually entered into an electronic format. To reduce the huge amount
of data that had to be entered, only positively rated symptom combinations, intermediate
combinations and diagnoses (both excluded and positively rated) were considered and
entered into MicrosoftTM ExcelTM sheets. This data can be saved in formats that can
easily be used by programs to compare the original results with the results of new systems
electronically.

4.3.2.1 Conversion of the patient data

To evaluate the results of the Arden-Syntax-based system, more than 3000 cases were
imported into the test data base. The export of the data from the WAMIS system data
base was the challenging part, as it had been created about 20 years ago and most experts
who where involved in the creation and definition of the data base scheme no longer work
at the Department of Medical Computer Sciences. The task of exporting the patient data
and reprogramming the export routines, which were written in PL-1, was mainly done by
Dieter Kopecky.

The result of the export was used for this work and consisted of a set of plain text files
in DBF format which were pre-processed and directly imported into an Oracle data base.
The pre-processing was based on small Java programs, so that updated versions (which
involved some corrections in the export routines) of the exported files could be easily
converted and imported again, replacing the old versions. As the CADIAG-II data base
scheme was adopted in an identical format, this step was devoid of any complications.
Alternatively, as the MedStage data base can be used in an object-oriented manner, it
would have been possible to reorganize the patient data in a way that all data of one
patient could be represented as collections with one central patient object. This conversion
was not done as the data base schema was considered suitable for this specific task.

CADIAG-II used job cards to start its inference process which provided all information to
start the inference process and which were not available for the evaluation of the current
system. As most job cards included additional information about radiological symptoms,
all such symptoms per patient on the printout were initially collected, compared to the
existing findings in the patient data base, and added if needed. After this step, the
MedStage data base theoretically consisted of the same information as was available during
the inference process of CADIAG-II.

4.3. CADIAG-II/RHEUMA+ARDEN 147

4.3.2.2 Comparison of the results with printed original results

First evaluations of the inference results indicated that the inference process of the current
CADIAG-II system might behave slightly differently than described in [Fis94]. Of course
this assumption is only based on the interpretation of the printout results which were used
for the evaluation.

Symptom ratings
As symptoms on the printouts were not entered in the ExcelTM sheets, they first had to
be compared manually. Stochastic tests of the symbol-to-data conversion layer and the
symptom-to-symptom relationships were made by comparing all positive- and negative-
rated symptoms on the printouts to the results of the Arden-Syntax-based system. This
evaluation comprised approximately 100 positive-rated symptoms and 1000 negative-rated
symptoms per patient and was done for 10 patients.

The compared values were identical except for one methodological error which was cor-
rected: The post-processing of radiological findings as described in appendix C.3 seemed
not to be included to the inference process which produced the printouts. When includ-
ing the post-processing MLM in the Arden-Syntax-based inference process, all affected
symptoms which are unknown on the print-out are rated ‘false’. After the MLM had been
removed from the inference process the symptom results were identical.

Further evaluations of the symptoms were deferred until errors on higher levels of ab-
straction, such as combinations or diagnoses, were detected. The indication that the
symptoms are correctly rated is strengthened when one compares the intermediate com-
binations based almost exclusively on symptoms.

Intermediate combination ratings
In sum, the 116 cases included 2554 ratings of intermediate combinations. Compared to
the original CADIAG-II system, 98.51 percent of these ratings were computed identically
by the Arden-Syntax-based system (table 4.2).

Table 4.2: Overall differences of intermediate combination ratings per patient

patient id total ratings differences
67013021 26 21
67009954 12 7
67008729 17 3
67021741 28 2
67019186 25 2
67002801 24 2
67018058 5 1
other 2417 0
total 2554 38

Seven cases included a total of 38 incorrect intermediate combination ratings. As the main
error source, invalid data base entries were identified for 33 of these incorrect ratings. Table
C.3 in the appendix on page 174 shows the differences of intermediate combination ratings
in detail: Two intermediate combination definitions (PT 18 and PT 34) include diagnosis
ratings and were rated incorrectly in five cases (highlighted by a red cell background).

148 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.3: Overall differences of diagnosis ratings (in sum: 1234 ratings)

error num perc
missing data 23 1.86
filtered relation 15 1.22
correct relation 3 0.24
diagnosis to diagnosis 17 1.38
total 58 4.70

The intermediate combination ‘PT 34’ (“chronic diarrhea with loss of blood or discharge
of mucus”) combines the ratings of ‘DF 107’ (“arthropathy associated with ulcerative
colitis”) and ‘DF 108’ (“arthropathy associated with regional enteritis”) by using the ‘or’
operator. In all three cases in which this combination was rated differently, the diagnosis
‘DF 107’ was rated 0.05 instead of 0.1.

Analogously, the second intermediate combination that includes diagnoses ‘PT 18’ (“rheuma-
toid arthritis or arthritis with collagenosis”) was rated incorrectly twice, that is 0.8 instead
of 0.9. In both cases the rating was based on the rating of ‘DF 1’ (“rheumatoid arthritis”),
which was (wrongly) rated 0.8 instead of 0.9.

In summary, the data to symbol conversion works in a satisfactory manner. All erroneous
ratings could been explained either by missing data in the data base or by the influence of
more abstract entities. However, the remaining inference process led to further differences
in the rating of more abstract entities, such as diagnoses and symptom combinations.

Diagnosis ratings
The first analysis of printouts showed that explanations of diagnosis hypotheses did not
include diagnosis-to-diagnosis relationships—with a few exceptions. Therefore, and as first
inference tests showed that most diagnosis-to-diagnosis relationships did significantly alter
the result, such relationships were not included in the inference process. Only symptom-to-
diagnosis and symptom-combination-to-diagnosis relationships were evaluated (similarly,
the scoring mechanism does not use diagnosis-to-diagnosis relationships to compute the
score of an entity). Furthermore, some sub-types of the symptom-combination-to-diagnosis
relationships, where one degree was 1.0 and the other unknown, were also filtered out.

By using this modified inference process, very similar results were achieved. A total of 1234
diagnoses with a rating of at least 0.4 were generated; the detailed results are shown in
tables C.4 to C.6 on pages 175 to 177. A total of 95.3 percent of the diagnosis hypotheses
were identical. Most of the 58 erroneous ratings were based on incomplete data (table
4.3).

Three diagnosis hypotheses were computed correctly but did not show up on the printout
of the corresponding case (“correct relation”). Another source of error was the reduced use
of symptom-combination-to-diagnosis relationships (“filtered relation”) and the exclusion
of diagnosis-to-diagnosis relationships. However, including these relationships leads to new
methodological errors, as shown next.

Symptom-combination-to-diagnosis relationships
Including the symptom-combination-to-diagnosis relationships in the inference process

4.3. CADIAG-II/RHEUMA+ARDEN 149

could correct the 15 wrongly ratings described earlier, but would lead to new errors, as ex-
plained exemplarily using the relationship between the diagnosis ‘DF 86’ (“osteoarthritis
of the hip”) and the symptom combination ‘BF 25’ (“osteoarthritis of the hip (ON)”). The
symptom combination is obligatory for the diagnosis, the degree of occurrence is therefore
defined as 1.0; the degree of evidence is not defined.

DF 86 null−→ BF 25
DF 86 1.0←− BF 25

The test data set includes 16 cases, where the symptom combination is excluded correctly
(following the printout). As it is obligatory for the diagnosis the Arden-Syntax-based
system excludes it, setting it to ‘false’ whereas the printout defines a positive rating (that
however usually is lower than 0.5) for this particular diagnosis.

Diagnosis-to-diagnosis relationships
Similarly, the inclusion of diagnosis-to-diagnosis relationships in the inference process
would correct the 17 erroneous ratings described earlier, but would introduce new falsely
rated entities. For example, a relationship is defined between ‘DF 87’ (“osteoarthrosis of
the knee”) and ‘DF 81’ (“osteoarthrosis”) with a degree of evidence of 1.0 and a unknown
degree of occurrence.

DF 87 1.0−→ DF 81

DF 87 null←− DF 81

The data set includes 46 cases, where the correctly rated diagnosis ‘DF 87’ increases the
rating of ‘DF 81’, whereas on the printout this relationship is not evaluated. In some cases
the difference is rather low but as the printout filters all diagnoses rated lower than 0.4,
small changes due to this relationship may significantly influence the results displayed to
the user.

Implementation of whole inference process
A test with the entire inference process as described in [Fis94] (including all relationships
and the radiological symptom post-processing) resulted in 201 differently rated diagnoses
compared to the printout.

Table 4.4 shows a brief synopsis of the changes in diagnoses ratings. The table includes
only such diagnoses that have been rated on the printout at least with 0.4 and shows how
many times the rating of the corresponding diagnosis was increased or how many times the
diagnosis was excluded (values in parentheses indicate the number of ratings that changed
from ‘null’ to a positive rating). Furthermore, the average relative change of the ratings is
shown as the difference for increased or decreased (excluded) values; those in parentheses
refer to ratings that changed from ‘null’ to a positive rating83.

Additionally the first column categorizes the reason for the changes of the corresponding
entity. This may be diagnosis-to-diagnosis relationships (‘df 2 df’), symptom-combination-
to-diagnosis relationships (‘bf 2 df’), or the post-processing of x-ray symptoms (‘post-pro’).

As mentioned earlier, the attempt to correct the errors identified when analyzing the
results of the reduced inference process directly led to new errors (differences between
the electronic results and the printout). For instance, adding the diagnosis-to-diagnosis

83In these cases the average value need not be equal to the relative change, as the entities might have
been rated with a positive value lower than 0.4 earlier and might have been filtered out in the output

150 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.4: Selected differences of diagnosis ratings between reduced and complete inference
process

diagnosis source increased avg. inc. excluded avg. dec.
DF 25 df 2 df (22) (0.42)
DF 36 bf 2 df 7 0.42
DF 62 df 2 df 1 + 1 0.5
DF 81 df 2 df (22) + 24 (0.5)+0.1
DF 84 post-pro 34 0.42
DF 86 bf 2 df 16 0.45
DF 93 df 2 df (1) (0.5)
DF 123 df 2 df (6) (0.5)
DF 137 df 2 df (4) (0.73)
DF 161 bf 2 df 6 0.45
DF 165 bf 2 df 6 0.5
DF 168 df 2 df (9) + 7 (0.9)+ 0.5
DF 169 df 2 df 5 (0.5)
DF 193 post-pro 1 0.5
DF 208 df 2 df (6) (0.7)
DF 247 df 2 df (1) (0.4)

relationships to the inference process corrected, on the one hand corrected the 17 erroneous
ratings of ‘DF 208’. On the other hand, evaluating this type of relationship resulted in
108 new errors, including 6 wrongly rated diagnoses ‘DF 208’. Regarding this diagnosis,
neither the one method nor the other one yielded a consistent result with no difference
compared to the printout.

Similarly, the inclusion of all symptom-combination-to-diagnosis relationships corrected
wrong ratings. Five ratings of ‘DF 86’ were corrected, but 16 new wrong ratings of the
same diagnosis have been added. In sum, the inclusion of these relationships resulted in
35 entities that have been rated differently.

The inclusion of the post-processing of the radiological symptoms led to 35 new errors
that occurred mainly for diagnosis ‘DF 84’.

The results are slightly inconsistent as methodological errors were detected, and could not
be corrected, since both alternatives created errors. To compare the results of the original
system with the Arden-Syntax-based one (both with a reduced or full inference process)
a medical expert should assess which results are “better” or less “wrong”.

4.3.2.3 Use of alternative logical operators

The CADIAG-II system provided the possibility to use an alternative set of logical oper-
ators that never return ‘null’. In such cases where the traditional three-valued operators
‘and’ and ‘or’ would return ‘null’, they would return ‘false’. The use of these alternatively
defined logical operators caused problems, as logical operators are explicitly defined by
the Arden Syntax specification. The option to use alternative operators is not available
in Arden Syntax.

As all test results that are present in the form of printouts are based on the alternative
logical operators, these operators would have to be implemented by separate MLMs, which

4.3. CADIAG-II/RHEUMA+ARDEN 151

would provide this extended function. However, like the use of other helper MLMs, the
use of separate MLMs would have slowed down the system significantly. As work-around,
the alternative operators have been implemented hard-coded in the engine.

As this native implementation breaks with the specification of the Arden Engine, a second
inference run based on the traditional implementation of the extended Arden Syntax
operators (as defined in section 2.3.3.3) was conducted. The results of the inference runs
were compared in order to locate those entities that are rated differently by the different
operator sets.

Intermediate combination ratings
Logical combinations are affected by two means. Firstly, as the combinations originally
used logical operators that never returned ‘null’, all “unknown” combinations were ex-
cluded. Now, those intermediate combinations that were excluded based on missing data
are rated as unknown (‘null’).

Furthermore, the classical Arden Syntax logic operators affected some intermediate com-
binations that were originally rated as being present. The error rate of 38 differently rated
intermediate combinations increased to 90 differences, concerning only the two combina-
tions ‘PT 13’ (which was rated ‘null’ instead of ‘true’ 13 times) and ‘PT 50’ (which was
analogously rated 39 times differently).

Diagnosis ratings
The total number of differences between original and Arden-Syntax-based ratings increases
from 58 to 249. Table 4.5 shows the concerned diagnoses which represent definitions of
different stages of rheumatoid arthritis. Those diagnoses that are mainly computed with a
high score, such as rheumatoid arthritis (‘DF 1’), osteoarthrosis (‘DF 81’), or osteoarthrosis
of the knee (‘DF 87’), are not affected and therefore seem to be robust against missing
data.

Table 4.5: Differences in diagnosis ratings between alternative logical operators and clas-
sical (Fuzzy) Arden Syntax logical operators

diagnosis differences
alternative classic

DF 73 2 28
DF 74 1 22
DF 75 0 9
DF 77 0 16
DF 78 0 10
DF 79 2 14
DF 532 1 44
DF 538 1 33
DF 539 1 23
DF 175 1 0

As the set of entities that are affected by the extended operators is rather small, it might be
possible to use the classic Fuzzy Arden logical operators by default and to implement the
alternative ones as MLMs, using them only to compute the correct results for the detected

152 CHAPTER 4. RESULTS AND DISCUSSION

entities. Another option would be to use the classical Fuzzy Arden logical operators only,
and to apply the ‘is present’ operator on entities that have to be rated as ‘false’ if the data
are not available.

Analogous to the assessment of the results of the different inference implementations, this
work should be done by a medical expert who is experienced enough to decide whether a
missing entity can be interpreted as ‘not present’ with a high degree of probability (and
can be used with the alternative operators, for instance).

4.4 Glaucoma monitoring

To realize a classifier that is based on fuzzy control rules, a Fuzzy Arden-based knowledge
base that used fuzzy conditional statements and linguistic variables was created. The
Arden-Syntax-based classifier was compared to an alternative representation of the same
knowledge base that was based on the Java programming language. The Java-based
classifier was created automatically by the software that was used to model the fuzzy
control rules (“FuzzyTech”).

As medical knowledge was addressed in recent work, the evaluation focuses on technical
aspects rather than medical ones.

4.4.1 Medical aspects

The medical evaluation of the Arden Syntax classifier was based on the data sets of 31
patients who were considered suspicious and were selected by a medical expert. The data
sets were classified both by the FuzzyTech software and the Arden-Syntax-based one,
which computed identical classifications.

If the intraocular pressure was within the range considered normal (up to 21 mmHg) the
fuzzy rules correctly classified the data as non-glaucomatous. The test data comprised 13
such cases; three of them strongly indicated a pathological state of the eye, which however
is not glaucomatous.

Furthermore, the test data included 11 cases in which the threshold-based classifier would
have generated a serious warning message due to a significantly increased IOP value.
However, only four of them were rated glaucomatous and three of them were classified as
being not very suspicious. Even when the IOP was increased, the perimetry data were
rated nearly normal.

The IOP values of the remaining cases were in the range of 21 mmHg to 25 mmHg and
were rated suspicious to different degrees. In particular, six cases that were close to the
lower threshold of 21mmHg were rated suspicious and glaucomatous, and would not have
been classified in this manner by a simple IOP threshold classifier.

In summary, perimetry data and CDR parameters may be additionally used to detect
glaucoma-related changes in intraocular pressure from other pathological influences on
this parameter. Additional pathological states can also be detected and communicated to
the patients or physicians.

4.4.2 Technical aspects

The fuzzy control rule sets of the glaucoma classifier have been successfully represented by
an extended version of the Arden Syntax. Every linguistic variable and every production

4.4. GLAUCOMA MONITORING 153

rule set has been represented by its own MLM. Two control MLMs read data from the
data base, initialize the input variables, and control the inference process. As a result, a
textual message that includes the results for both eyes is generated.

The performance of the Arden-Syntax-based system is good enough to return results
instantly (table 4.6).

Table 4.6: Performance of the Fuzzy Arden-based glaucoma classifier

31 runs in total msec/MLM
total classification

average 60 50
maximum 89 68
minimum 44 39
stddev 13 10

The time needed for one classification of the data of one eye takes an average of 25 ms.
The pre-processing and creation of the message text require an additional 10 ms. The
time required to display the message on the screen or to send it by e-mail is not included
in these durations as this additional time expenditure would apply in equal measure to
the Arden-Syntax-based classifier and the Java based one.

Compared to the representation of the classifier, which is based on Java, it needs a negligi-
ble amount of additional time. However, the performance advantage of the programming
language-based classifier has to compete with the flexibility of the Arden-Syntax-based
classifier.

Every time the rules are altered they have to be incorporated into the running system. In
contrast to the classifier based on a program code, when using Arden Syntax MLMs no
programmer was needed to integrate the rules into the system and no program code had
to be directly linked into the information system, as the knowledge is strictly separated
from the program code of the expert system. Whereas the generated program code had
to be externally compiled and linked to the system, which usually requires to stop and to
restart it.

Furthermore, both representations had to be modified and individualized manually, as data
base queries and evocation procedures had to be implemented separately. A knowledge
engineer or the medical expert can modify the MLMs and no programmer of the informa-
tion system is required. Usually such a programmer would be required if the data base
queries and the evocation issues were to be implemented at the programming language
level. In other words, the knowledge base of this Arden-Syntax-based telemedicine system
can be dynamically modified without stopping, recompiling, or restarting the software.

The reusability of the rules and linguistic variables is improved by the modular represen-
tation in Arden Syntax. The use of the linguistic variable MLMs is not limited to this
particular classifier or fuzzy control production rules in general. Common linguistic vari-
ables, such as body temperature or blood pressure, could be used in fuzzy control rules as
well in classical Arden Syntax rules to improve the readability of the code, by encouraging
the author to use linguistic expressions.

However, the general overview of complex fuzzy rule sets is easier to comprehend when a
graphical user interface, such as the one supplied with the FuzzyTech software, is used.
Thus a graphical environment for developing Arden Syntax MLMs could not only improve
the development of Medical Logic Modules in general, but also that of complex Arden-
Syntax-based fuzzy rules in particular.

Chapter 5

Conclusion

Fuzzy Arden unifies an easily readable syntax with sophisticated concepts of fuzzy set
theory and fuzzy logic to provide a means of representing uncertain knowledge by im-
plementing vague concepts. The definition of linguistic variables by independent MLMs
allows rule authors to use expressions that are close to their linguistic description and to
use the benefits of fuzzy control systems.

Fuzzy Arden was not developed to be “yet another” fuzzy language or a fuzzy-mathematical
framework. Thus, only selected concepts of fuzziness theories have been applied to the
syntax. Fuzzy sets have been used to calculate fuzzy truth values of conditions that rep-
resented the degree of compatibility of one data value to a set, which was defined by
the conditional expression. Fuzzy logic is supported in means of logical operators. Be-
cause of the functional support of fuzzy truth values and fuzzy data by all operators and
statements, Fuzzy Arden is more than a mere MLM library that provides some fuzzy set
operations. Almost all elements behave, if used with crisp truth values, like the classic
Arden Syntax elements. However, even if the syntactical extensions of the basic features
are straightforward, the functional extensions would require existing runtime systems to
be updated and extended in every part.

In the future Arden Syntax knowledge bases might not only consist of a set of procedural
rules but also of a set of linguistic variables. Every linguistic variable could then be used
by any other MLM to achieve good maintainability. Thus, authors of MLMs could refer to
medical concepts by using linguistic variables without having to redefine them every time
they are used. However, such usage would imply that the linguistic variables are defined
according to a general consensus between the users and authors concerning the interpre-
tation of the terms. The concept of a linguistic variable MLM may be improved in the
future by defining context sensitive linguistic variables. The values of a linguistic variable
could then be defined, based on a set of different compatibility functions, depending on sex
(crisp criterion) or age (fuzzy criterion), for instance. While crisp context criteria would
result in selecting one compatibility function, fuzzy ones would result in two dimensional
compatibility functions that define the value.

Rules engine
The rules engine served its purpose of being used to implement the extensions and evaluate
the concepts. After implementing the basic rules engine that can read and execute com-
mon Arden Syntax MLMs, implementing the extensions became a manageable issue. The
object-oriented design of the rules engine simplified the extension as some default meth-
ods could have been defined centrally. The engine has been tested by a semi-automated

154

155

verification process that was based on a set of test MLMs. This process was found useful,
an official set of test MLMs by HL7 would be therefore desirable.

The software was not developed as a product; thus some issues still need to be resolved. An
important feature could be an interactive debugger that is able to move stepwise through
the algorithm and display the values of the local variables. This extension should be easy to
realize as the execution-relevant parts within the classes of the operators, commands, and
the runtime environment could be extended by such a stepwise execution mode without
touching the rest of the engine.

Future work should also address security issues which were less relevant for this work.
A clinical expert system must have access to data that usually are restricted to selected
clinical stuff. As intruders could write MLMs that search for sensitive data or listen to
patient-related events, the access to the knowledge base and altering or adding knowledge
should be restricted at the level of the user interface.

CADIAG-II/RHEUMA+Arden
The conversion of the CADIAG-II/RHEUMA knowledge base to Fuzzy Arden has been
successful. The results of the inference process were close to the original results. However,
certain factors made the new representation difficult. Reconstructing the inference process
and the structure of the knowledge base has been a challenging task that has been largely
undertaken by members of the Section on Medical Expert and Knowledge-Based Systems
at the University of Vienna Medical School. As a by-product of this work, the test results
and the corresponding test templates are available electronically and could be used for
further projects to verify the inference results.

Compared to the representation of the knowledge base that was the source for the conver-
sion to Fuzzy Arden, the resulting knowledge base representations improves the readability
and should therefore improve the maintainability as well. The readability of the knowledge
base seemed to be reciprocally proportional to the performance of the system. Therefore
Arden Syntax may be a suitable intermediate format for the knowledge base but may not
be the optimal one as an executable end format.

Generally the representation of the knowledge base should be driven by the skill level
of the user and the desired use of the formalized knowledge. The representation format
could be an arbitrarily complex syntax if only a machine has to infer on it. If such an
complex and eventually unreadable syntax would result in high performance, it would be
perfect for such use. If, on the other hand, humans have to understand the knowledge
base, a more simple, possibly abstract representation could be required. Experienced
Arden Syntax users might feel most comfortable, when directly coding rules by using a
text editor and working with the syntax. Inexperienced users might primarily like to use a
graphical knowledge acquisition tool that hides all syntactical constructs behind intuitively
comprehensible user interfaces.

In respect of the CADIAG-II knowledge base, a specialized graphical knowledge acquisition
tool could increase the maintainability of the knowledge on a high level of abstraction. The
next level could be a very modular representation of the knowledge base by Arden Syntax
where every single entity, such as a diagnosis or a symptom, is represented as an individual
MLM. This representation could still be useful for skilled Arden Syntax engineers who are
able to work more productively on the code rather than use the graphical interface. A
compiler could then translate the Arden Syntax code to a more compact Arden Syntax
code (if the rules engine uses Arden Syntax) or even to another formalism that is finally
executed by the system.

156 CHAPTER 5. CONCLUSION

Then, however, the output format would not be as important as if the users would have
to maintain the knowledge directly in the chosen representation format. However, Arden
Syntax would still have the advantage of being a widely accepted standard. If the exten-
sions proposed in this work are included in the standard and implemented by vendors, the
entire knowledge base could be transferred and used by other systems.

Future work on the Fuzzy Arden representation of the CADIAG-II knowledge base could
include the explanation of given diagnosis hypotheses by clicking on the corresponding
hypothesis in the web browser. Another issue is the output of unknown symptoms which,
however, would strengthen the level of a given diagnosis hypothesis.

Glaucoma monitoring
The glaucoma classifier is exemplary for projects in which a large number of patients have
to be monitored for changes in their vital parameters. When monitoring glaucoma-related
changes in the eye status, the fund of data tends to increase rapidly due to the ongoing
measurement of IOP values for each patient. The expert system can assist the physician
in daily routine by sending alerts in the event of critical or suspicious eye states in their
patients.

The fuzzy rule-based classifier has some advantages over a simple classifier that only
monitors the IOP and uses crisp thresholds. Compared to such a classifier, the fuzzy rules
classify the data sets more precisely and are additionally able to detect non-glaucomatous
states with an increased IOP as well as glaucomatous states with IOP values close to the
normal range. The use of linguistic variables based on the concept of fuzzy sets and fuzzy
production rules avoids unintuitive changes of the classification results of borderline cases.

The explicit representation of knowledge by the Arden Syntax-based rules engine has
certain advantages over systems that represent the knowledge implicitly in their program
code. It provides high flexibility in terms of adding, removing, or modifying knowledge
without having to modify the system.

Finally. . .
Fuzzy Arden has been worked out with the motivation to carefully enhance an existing
format that has a certain support in the medical community as well as in the industry. As
these extensions have an impact on borderline cases of decisions, they might be the “icing
on the cake” whenever vague medical knowledge has to be represented.

At the recent meetings of the HL7 Arden Syntax SIG it became increasingly clear that the
Arden Syntax will gradually become an object-oriented paradigm which could enable the
representation of complex data values as data records with different attributes. Thus the
extension that defines ‘fuzzy data’ by a new attribute, ‘degree of presence’, would perfectly
meet this development. As another fundamental aspect of the object-oriented paradigm—
the explicit representation of the functionality by methods—will probably not be included
in the next versions of Arden Syntax; the functionality of operators and statements will
still be implicitly defined by the specification document. To process fuzzy truth values
and fuzzy data it will not be sufficient to add the additional attribute ‘degree of presence’
to the Arden Syntax, but it would require an extension of the syntax as proposed in this
work. When adding other attributes that may represent other types of uncertainty, for
instance Dempster-Shafer belief values, the functionality of the statements and operators
would have to be extended analogous to process and to handle such attributes. Significant
functional changes can hardly be avoided if rather complex methods are to be fully included
in the syntax.

157

It has been a pleasure for the author to present and discuss these proposals with members
of the Arden Syntax Special Interest Group of HL7 over the past years. Thanks to all of
those who supported this work.

Appendix A

Bibliography

[Adl80] K.-P. Adlassnig. A fuzzy logical model of computer-assisted medical diagnosis.
Methods of Information in Medicine, 19:141–148, 1980.

[AK82] K.-P. Adlassnig and G. Kolarz. Cadiag-2: Computer-assisted medical diagnosis
using fuzzy subsets. In M.M. Gupta and E. Sanchez, editors, Approcimate Rea-
soning in Decision Analysis, pages 219–247. North-Holland Publishing Com-
pany, 1982.

[AKL+82] K.-P. Adlassnig, G. Kolarz, F. Lipomersky, I. Gröger, and G. Grabner. Cadiag
1: A computer-assisted diagnostic system on the basus of symbolic logic and its
application in internal medicine. In Medical Informatics Europe 82, Springer,
Berlin, 1982.

[AKSG86] K.-P. Adlassnig, G. Kolarz, W. Scheithauer, and H. Grabner. Approach to a
hospital-based application of a medical expert system. Medical Informatics,
11:205–223, 1986.

[ALK96] K.-P. Adlassnig, H. Leitich, and G. Kolarz. Expert systems in rheumatology.
Rheumatology in Europe, 25:104–108, 1996.

[AS00] K.-P. Adlassnig and M. Schuertz. Medizinische Expertensysteme. lecture notes,
Institut für Medizinische Computerwissenschaften, Bereich für Medizinische
Experten- und Wissensbasierte Systeme, University of Vienna Medical School,
Spitalgasse 23, 1090 Vienna, Austria, 2000.

[ASG+94] H. Ahlfeld, N. Shahasavar, X. Gao, K. Arkad, B. Johannson, and O. Wigertz.
Data driven medical decision support system based on Arden Syntax within
the helios environment. Computer Methods and Programs in Biomedicine,
45:97–106, 1994.

[Ast92] Standard Specification for Defining and Sharing Modular Health Knowledge
Bases (Arden Syntax for Medical Logic Modules). Philadelphia, 1992.

[BC90] T.J.M. Bench-Capon. Knowledge Representation – An Approach to Artificial
Intelligence. Academic Press, London, 1990.

[BE97] M. B̊ang and H. Eriksson. Generation of development environments for the
Arden Syntax. In Proceedings of the 1997 AMIA Annual Fall Symposium,
pages 313–317, 1997.

158

BIBLIOGRAPHY 159

[Bib93] W. Bibel. Wissensrepräsentation und Inferenz. Vieweg, Braunschweig, 1993.

[Bie97] B. Biewer. Fuzzy-Methoden – Praxisrelevante Rechenmodelle und Fuzzy-
Programmiersprachen. Springer, Berlin, 1997.

[BS84] B. Buchanan and E.H. Shortliffe. Rule-based expert systems: The MYCIN
experiment at the Stanford heuristic programming project. Addison-Wesley,
1984.

[Dup94] F. Dupuits. The use of the Arden Syntax for mlms in HIOS+, a decision
support system for general practitioners in the netherlands. Computers in
Biology and Medicine, 24:405–410, 1994.

[Eck00] B. Eckel. Thinking in Java. Prentice-Hall, 2nd edition, 2000.

[Fis94] F. Fischler. Die Wissensbasis und der Inferenzprozess des medizinischen Ex-
pertensystems CADIAG-II/E. Master’s thesis, University of Vienna Medical
School, 1994.

[Gao93] X. Gao. Realizing medical decision support systems using the Arden Syntax
as knowledge representation. PhD thesis, Linköping University, Department
of Biomedical Engineering, Medical Informatics, Linköping University, 58183
Linköping, Sweden, 1993.

[Gel94] M. Gelfond. Logic programming and reasoning with incomplete information.
Annals of Mathematics and Artificial Intelligence, 12:89–116, 1994.

[GJS+93] X. Gao, B. Johansson, N. Shahsavar, K. Arkad, H. Ahlfeld, and O. Wigertz.
Pre-compiling medical logic modules into C++ in building medical decision
support systems. Computer Methods and Programs in Biomedicine, 41:107–
119, 1993.

[GM99] A. Geissbuhler and R.A Miller. Distributing knowledge maintainance for clin-
ical decision-support systems: the “knowledge library” model. In Proceedings
of the 1999 AMIA Annual Fall Symposium, 1999.

[GRS00] G Goerz, C.-R. Rollinger, and J. Schneeberger, editors. Handbuch der
Künstlichen Intelligenz. Oldenbourg, Munich, 2000.

[GSA+92] X. Gao, N. Shahsavar, K. Arkad, G. Hripcsak, and O. Wigertz. Design and
functions of medical knowledge editors for the Arden Syntax. In K.C. Lun
et al., editors, MEDINFO 92, 1992.

[H+89] G. Herold et al. Innere Medizin. Dr. med. Gerd Herold, 1989.

[HBS+01] S. Hoelzer, H. Boettcher, R. Schweiger, J. Konetschny, and J. Dudeck. Pre-
sentation of problem-specific, text-based medical knowledge:. In Proceedings
of the 2001 AMIA Annual Fall Symposium, 2001.

[HCJC92] G. Hripcsak, J.J. Cimino, S.B. Johnson, and P.D. Clayton. The Columbia-
Presbyterian Medical Center decision-support system as a model for imple-
menting the Arden Syntax. In Proceedings of the 1992 AMIA Annual Sympo-
sium, 1992.

[Hel01] H. Helbig. Die semantische Struktur natürlicher Sprache. Springer, Berlin,
2001.

160 BIBLIOGRAPHY

[HLP+94] G. Hripcsak, P. Ludemann, T. A. Pryor, O. B. Wighertz, and P. D. Clayton.
Rationale for the Arden Syntax. Computers and Biomedical Research, 27:291–
324, 1994.

[Hls99] Health Level Seven, 3300 Washtenaw Ave, Suite 227, Ann Arbor, MI 48104.
helbig:2001Arden Syntax for Medical Logic Systems, 1999.

[Hls00a] Health Level Seven, http://www.hl7.org. Clinical Decision Support and Arden
Syntax TC meeting minutes, Spring Working Group Meeting, May 2000.

[Hls00b] Health Level Seven, http://www.hl7.org. Clinical Decision Support and Arden
Syntax TC meeting minutes, Fall Working Group Meeting, September 2000.

[Hls01a] Health Level Seven, http://www.hl7.org. Arden Syntax SIG meeting minutes,
Working Group Meeting, January 2001.

[Hls01b] Health Level Seven, http://www.hl7.org. Arden Syntax SIG meeting minutes,
Spring Working Group Meeting, May 2001.

[Hls01c] Health Level Seven, http://www.hl7.org. Arden Syntax SIG meeting minutes,
Autumn Plenary Meeting, October 2001.

[Hls01d] Health Level Seven, http://www.hl7.org. Clinical Decision Support TC meet-
ing minutes, Autumn Plenary Meeting, October 2001.

[Hls01e] Health Level Seven, http://www.hl7.org. Clinical Guidelines SIG meeting min-
utes, Spring Working Group Meeting, May 2001.

[Hls01f] Health Level Seven, http://www.hl7.org. GLIF SIG meeting minutes, Working
Group Meeting, January 2001.

[Hls02a] Health Level Seven, http://www.hl7.org. Arden Syntax SIG meeting minutes,
Spring Working Group Meeting, April 2002.

[Hls02b] Health Level Seven, http://www.hl7.org. Arden Syntax SIG meeting minutes,
Winter Working Group Meeting, January 2002.

[Hls02c] Health Level Seven, http://www.hl7.org. Clinical Decision Support SIG meet-
ing minutes, Winter Working Group Meeting, January 2002.

[Hls02d] Health Level Seven, http://www.hl7.org. Clinical Decision Support TC meet-
ing minutes, Spring Working Group Meeting, April 2002.

[HPW95] G. Hripcsak, T.A. Pryor, and O. Wigertz. Transferring medical knowledge
bases between different HIS environments. In H.U. Prokosch and J. Dudek,
editors, Hospital Information Systems: Design and Development Character-
istics; Impact and Future Architecture, pages 241–264, Elsevier, Amsterdam,
1995.

[Hri94a] G. Hripcsak. The Arden Syntax for Medical Logic Modules: Introduction.
Computers in Biology and Medicine, 24:329–330, 1994.

[Hri94b] G. Hripcsak. Writing Arden Syntax Medical Logic Modules. Computers in
Biology and Medicine, 24:331–363, 1994.

BIBLIOGRAPHY 161

[JB93] B. Johansson and Y. Bergqvist. Integrating decision support, based on the
Arden Syntax, in a clinical laboratory environment. In Proceedings of the 17th
Annual Symposium on Computer Applications in Medical Care, McGraw-Hill,
New York, 394–398 1993.

[JHHC98] R.A. Jenders, H. Huang, G. Hripcsak, and P.D. Clayton. Evolution of a knowl-
edge base for a clinical decision support system encoded in Arden Syntax. In
Proceedings of the 1998 AMIA Annual Fall Symposium, 1998.

[JJC+01] M.-C. Jaulent, C. Joyaux, I. Colombet, P. Gillois, P. Degoulet, and G. Chatel-
lier. Modelling uncertainty in computerized guidelines using fuzzy logic. In
Suzanne Bakken, editor, Proceedings of the annual symposium of the Ameri-
can Medical Informatics Association, pages 284–288. Hanley and Belfus, Inc.,
2001.

[JMB94] R. Jenders, M. Morgan, and G.O. Barnett. Use of open standards to implement
health maintenance guidelines in a clinical workstation. Computers in Biology
and Medicine, 24:385–390, 1994.

[Joh97] B. Johansson. Methods, design and development of clinical decision support
systems based on the Arden Syntax. PhD thesis, Department of Biomedical
Engineering, Medical Informatics, Linköping University, S-581 85 Linköping,
Sweden, 1997.

[JW92] B. Johansson and O. Wigertz. An object oriented approach to interpret medical
knowledge based on the Arden Syntax. In Proceedings of the 16th Annual
Symposium on Computer Applications in Medical Care, McGraw-Hill, New
York, 52–56 1992.

[Kan92] A. Kandel. Fuzzy expert systems. CRC Press, Boca Raton, 1992.

[KAR01] D. Kopecky, K.-P. Adlassnig, and A. Rappelsberger. An overview of the cur-
rent state of the MedFrame/CADIAG-IV project. In K.-P. Adlassnig, editor,
Intelligent Systems in Patient Care, pages 89–96, Österreichische Computerge-
sellschaft, Vienna, 2001.

[KCH+02] H.C. Karadimas, C. Chailloleau, F. Hemery, J. Simonnet, and E. Lepage.
Arden/J: An architecture for MLM execution on the Java platform. JAMIA,
9:359–368, 2002.

[KR94] R.A. Kuhn and R.S. Reider. A C++ framework for developing medical logic
modules and an Arden Syntax compiler. Computers in Biology and Medicine,
5:365–370, 1994.

[Kui75] B.J. Kuipers. A frame for frames: representing knowledge for recognition. In
D.G. Bobrow and A. Collins, editors, Representation and understanding, pages
151–18, Academic Press, New York, 1975.

[Lud94] P. Ludemann. Mid-term report on the Arden Syntax in a clinical event monitor.
Computers in Biology and Medicine, 24:377–383, 1994.

[�Luk30] J. �Lukasiewicz. Philosophische Bemerkungen zu mehrwertigen Systemen des
Aussagenkalküls, 1930.

[�Luk51] J. �Lukasiewicz. Aristotle’s syllogistic. Oxford University Press, Glasgow, 1951.

162 BIBLIOGRAPHY

[MAG+91] G. Magyar, K. Arkad, X. Gao, H. Gill, O. Wigertz, and H. Ahlfeld. Strategies
for efficient implementation of the Arden Syntax for medical decision support.
In International Congress on Medical Informatics MIE 91, pages 222–226,
Vienna, Austria, 1991.

[Min75] M. Minsky. A framework for representing knowledge. In P.H. Winston, editor,
The psychology of computer vision, pages 211–277, McGraw-Hill, New York,
1975.

[NKK96] D. Nauck, F. Klawonn, and R. Kruse. Neuronale Netze und Fuzzy-Systeme.
Vieweg, Braunschweig, 1996.

[PH94] T.A. Pryor and G. Hripcsak. Sharing MLM’s: An experiment between
Columbia-Presbyterian and LDS hospital. In C Safran, editor, Proceedings
of the Seventeenth Annual Symposium on Computer Applications in Medical
Care, 1994.

[Pry94] T.A. Pryor. The use of medical logic modules at LDS hospital. Computers in
Biology and Medicine, 24:391–395, 1994.

[Rei91] U. Reimer. Einführung in die Wissensrepräsentation. B. G. Teubner,
Stuttgart, 1991.

[RM75] E. Rosch and C. Mervis. Family resemblances: Studies in the internal structure
of categories. Cognitive psychology, 7:573–605, 1975.

[Ros73] E. Rosch. On the internal structure of perceptual and semantic categories.
In T.E. Moore, editor, Acquisition of Language, Academic Press, New York,
1973.

[Ros78] E. Rosch. Principles of categorzisation. In E. Rosch and B.B. Lloyd, editors,
Cognition and Categorization, pages 27–48, Erlbaum, Hillsdale, 1978.

[Rus23] B. Russell. Vagueness. Australian Journal of Psychology and Philosophy, 1:84–
92, 1923.

[San70] E.S. Santos. Fuzzy algorithms. Information and Control, 17:326–339, 1970.

[SB75] E.H. Shortliffe and B.G. Buchanan. A model of inexact reasoning in medicine.
Mathematical Biosciences, 23:351–379, 1975.

[Sin70] A.A. Sinowjew. Über mehrwertige Logik. Vieweg, Braunschweig, 1970.

[SKB80] J.R. Searle, F. Kiefer, and M. Bierwisch. Speech act theory and pragmatics.
Reidel, Dordrecht, 1980.

[Smi85] B. Smith. Prologue to ‘reflection and semantics in a procedural language’. In
R.J. Brachman, editor, Readings in Knowledge Representation, 1985.

[Taf99] A.G. Tafazzoli. Klinisch einsetzbare wissensverarbeitende Funktionen in einem
onkologischen Informationssystem. PhD thesis, Justus-Liebig-Universität
Giessen, Medizinische Informatik, Heinrich-Buff-Ring 44, 35392 Giessen, Ger-
many, 1999.

BIBLIOGRAPHY 163

[TAW+99] A.G. Tafazzoli, U. Altmann, W. Waechter, F.R. Katz, S. Hoelzer, and
J. Dudeck. Integrated knowledge-based functions in a hospital cancer reg-
istry – specific requirements for routine applicability. In Proceedings of the
1999 AMIA Annual Fall Symposium, 1999.

[Who98] World Health Organiation, World Health Organization, Avenue Appia 20, 1211
Geneva 27, Switzerland. The world health report, 1998.

[Win92] P.H. Winston. Artificial Intelligence. Addison-Wesley, 3rd edition, 1992.

[Wri75] C. Wright. On the coherence of vague predicates. Synthese, 30:325–365, 1975.

[Zad65] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[Zad68] L.A. Zadeh. Fuzzy algorithms. Information and Control, 12:94–102, 1968.

[Zad71] L.A. Zadeh. Quantitative fuzzy semantics. Information Sciences, 3:159–176,
1971.

[Zad73] L.A. Zadeh. Outline of a new approach to the analysis of complex systems and
decision processes. IEEE Transactions on Systems, Man, and Cybernetics,
3:28–44, 1973.

[Zad76a] L.A. Zadeh. A fuzzy-algorithmic approach to the definition of complex or
imprecise concepts. International Journal of Man-Machine Studies, 8:249–291,
1976.

[Zad76b] L.A. Zadeh. The linguistic approach and its application to decision analysis.
In Y.C. Ho and S.K. Mitter, editors, Directions in Largescale Systems, pages
339–370, Plenum Press, New York, 1976.

[Zad87] L.A. Zadeh. The concept of a linguistic variable and its application to ap-
proximate reasoning, part I–III. In R.R. Yager et al., editors, Fuzzy sets and
applications, pages 219–366, Wiley-Interscience, New York, 1987.

[Zad89] L.A. Zadeh. Knowledge representation in fuzzy logic. IEEE Transactions On
Knowledge And Data Engineering, 1:89–99, 1989.

[Zad90] L.A. Zadeh. The birth and evolution of fuzzy logic. General Systems, pages
95–105, 1990.

[Zad96] L.A. Zadeh. Fuzzy logic = computing with words. IEEE Transactions on
Fuzzy Systems, 4:103–111, 1996.

[Zad99] L.A. Zadeh. From computing with numbers to computing with words—from
manipulation of measurements to manipulation of perceptions. IEEE Trans-
actions on Circuits and Systems, 45:105–119, 1999.

[ZSW97] G. Zahlmann, M. Scherf, and A. Wegner. A neuro-fuzzy-classifier for a
knowledge-based glaucoma monitor. In Artificial Intelligence in Medicine,
pages 273–284, 1997.

Appendix B

Fuzzy Arden Syntax BNF

In the official specification, the MLM syntax is defined using Backus-Naur Form (BNF):

“The following definitions hold:

• <expression> — represents the non-terminal expression

• IF — represents the terminal if, iF, If, or IF

• := — represents the terminal :=

• ::= — is defined as

• /*...*/ — a comment about the grammar

• | — or

Terminals are listed in upper case, but the language is case insensitive out-
side of character strings. In structured slots, space, carriage return, line feed,
horizontal tab, vertical tab, and form feed are considered white space and are
ignored. In addition, the terminal the is treated as white space (that is, the
word the is ignored).

With minor modifications, the following grammar can be processed by an
LALR(1) parser generator, except where noted by comments against individual
rules.”

This appendix includes only those parts that are affected by the extensions. For copyright
reasons, the entire BNF is not published here.

B.1 Changes in the BNF for Fuzzy Arden without linguistic
variables

In the section “expressions” the expression “fuzzified by” is added for simple comparisons:

<expr_comparison> ::=
<expr_string>

| <expr_string> <simple_comp_op> <expr_string> <fuzzby_expr>
| <expr_string> <is> <main_comp_op>
...

164

B.1. CHANGES IN THE BNF FOR FUZZY ARDEN WITHOUT LINGUISTIC VARIABLES165

The overall conclude value can be accessed only in the action slot by the keyword “con-
cluding”.

<expr_factor_atom> ::=
<identifier>

...
| "CONCLUDING" /* Value of "CONCLUDE VALUE" is NULL */

/* outside of action slot. */

In the section “operators” the use of the fuzzification on binary comparison operators is
defined:

<main_comp_op> ::=
<temporal_comp_op>

| <range_comp_op>
| <unary_comp_op>
| <binary_comp_op_crisp_behavior> <expr_string>
| <binary_comp_op_fuzzy_behavior> <expr_string> <fuzzby_expr>

/* the WITHIN TO operator will accept any ordered parameter,
including numbers, strings (single characters), times,
Boolean /*

<range_comp_op> ::=
"WITHIN" <expr_string> <fuzzby_expr> "TO" <expr_string> <fuzzby_expr>

<temporal_comp_op> ::=
"WITHIN" <expr_string> <fuzzby_expr> "PRECEDING" <expr_string> <fuzzby_expr>

| "WITHIN" <expr_string> <fuzzby_expr> "FOLLOWING" <expr_string> <fuzzby_expr>
| "WITHIN" <expr_string> <fuzzby_expr> "SURROUNDING" <expr_string>
| "WITHIN" "PAST" <expr_string> <fuzzby_expr>
| "WITHIN" "SAME" "DAY" "AS" <expr_string> <fuzzby_expr>
| "BEFORE" <expr_string> <fuzzby_expr>
| "AFTER" <expr_string> <fuzzby_expr>
| "EQUAL" <expr_string> <fuzzby_expr>
| "AT" <expr_string> <fuzzby_expr>

<binary_comp_op_crisp_behavior> ::=
"IN"

<binary_comp_op_fuzzy_behavior> ::=
"LESS" "THAN"

| "GREATER" "THAN"
| "GREATER" "THAN" "OR" "EQUAL"
| "LESS" "THAN" "OR" "EQUAL"

The optional fuzzification is defined by:

<fuzzby_expr> ::=
/* empty */
| "FUZZIFIED BY" <expr_string>

The Boolean value is extended by fuzzy truth constants:

<boolean_value> ::=
"TRUE"

| "FALSE"
| "FUZZY" <number>

166 APPENDIX B. FUZZY ARDEN SYNTAX BNF

In the section “expressions” an additional keyword for sorting list elements by their degree
of presence is added:

<sort_option> ::=
"TIME"

| "DATA"
| "PRESENCE"

B.2 Further changes in the BNF for Fuzzy Arden including
linguistic variables

The first modification affects the knowledge category body. In addition to the common
“rule body” an alternative one is defined:

<knowledge_body> ::=
<classic_body>
| <lv_body>

<classic_body> ::=
/* the former knowledge_body */
/* ... */

<lv_body> ::=
<lv_type_slot>
<values_slot>
<input_slot>
<range_slot>
<unit_slot>
<defuzzification_slot>
<sets_slot>

The slots are defined as follows:

/***** special slots for linguistic variables ******/
<values_slot> ::=

"VALUES:" <lv_values> ";;"

<lv_values> ::=
<term>
| <term> "," <lv_values>

<input_slot> ::=
/* empty */
| "INPUT:" <input_block> ";;"

<input_block> ::=
/* optional input can be done by one read statement or one or multiple mlm definitions */
<input_mlm_block>
| <input_read_statement>

<input_read_statement> ::=
"READ" <read_phrase> ";"

B.2. FURTHER CHANGES IN THE BNF FOR FUZZY ARDEN INCLUDING LINGUISTIC VARIABLES

<input_mlm_block> ::=
<input_mlm_block> ";" <input_mlm_definition>
| <input_mlm_definition>

<input_mlm_definition> ::=
/* empty */
| <result_selection> <input_mlm_assign_phrase>

<result_selection> ::=
/* empty */
| "RESULT" <number> "FROM"

<input_mlm_assign_phrase> ::=
"MLM" <term>
| "MLM" <term> "FROM" "INSTITUTION" <string>

<range_slot> ::=
"RANGE:" <number> "," <number> ";;"

<unit_slot> ::=
/* empty */
| "UNIT:" <term> ";;"

<defuzzification_slot> ::=
/* empty */
| <defuzzification_method>

<defuzzification_method> ::=
"DEFUZZIFICATION:" <id> ";;"

<sets_slot> ::=
"SETS:" <sets_block> ";;"

<sets_block> ::=
<sets_block> ";" <set_statement>
| <set_statement>

<set_statement> ::=
<term> ":=" <set_type> "(" <set_def> ")"

<set_type> ::=
"LINEAR"

<set_def> ::=
<set_point>
| <set_def> "," <set_point>

<set_point> ::=
"(" <number> "," <number> ")"

To assign linguistic values to a linguistic variable in the logic slot, the assignment expres-
sion is extended:

<logic_assignment> ::=
<identifier_becomes> <expr>
| ...

168 APPENDIX B. FUZZY ARDEN SYNTAX BNF

| <linguistic_variable_assignment>

<linguistic_variable_assignment> ::=
"SET" <id> "TO" <term>
| "SET" <id> "TO" <term> "WITH" <expr>

The main comparison expression is altered to compare linguistic variables to terms:

<expr_comparison> ::=
<expr_string>
| ...
| <expr_string> <is> <term>

Within the data slot, linguistic variable MLMs can be referenced analogous to common
MLMs:

<data_assign_phrase> ::=
"READ" <read_phrase>
| "MLM" <term>
| "MLM" <term> "FROM" "INSTITUTION" <string>
| <init_lv> "LINGUISTIC" "VARIABLE" <term>
| <init_lv> "LINGUISTIC" "VARIABLE" <term> "FROM" "INSTITUTION" <string>

<init_lv> ::=
/* empty */
| "INIT"

Finally the ‘defuzzify’ operator is defined:

<of_noread_func_op> ::=
"ANY"
| ...
| "DEFUZZIFY"

Appendix C

Cadiag-II

C.1 Implication operator

The implication operator is used to compute the influence of an entity ej to an entity ei.
The influence is controlled by the degree of evidence and the degree of occurrence of the
relationship.

ej → ei with a degree of evidence

ej ← ei with a degree of occurrence

ej is known, ei is to be computed

Table C.1: Definition of the CADIAG-II inference operator.

degree of evidence (b)

d
eg

re
e

of
o
cc

u
rr

en
ce

ε 0 (0 . . . 1) 1
ε ε ε ε, if ej = 0 ε, if ej = 0

ε, if ej = ε ε, if ej = ε
ε, if ej = ω ε, if ej = ω

min(ej , b), else ej , else
0 ε 0, if ej = 1 ω ω

ε, else
(0 . . . 1) ε ω ε, if ej = 0 ε, if ej = 0

ε, if ej = ε ε, if ej = ω
ε, if ej = ω ε, if ej = ε
min(ej , b) ej , else

1 0, if ej = 0 ω ε, if ej = ω ε, if ej = ω
ε, else ε, if ej = ε ε, if ej = ε

min(ej , b), else ej , else

The operator is implemented as a separate MLM that is called from the inference MLMs
which have to evaluate relationships. To increase the performance of the system, the
number of MLM calls should be kept as small as possible; therefore the MLM can either
be called with one related entity and the corresponding degree of evidence and occurrence,

169

170 APPENDIX C. CADIAG-II

or with three lists where the first represents n ratings of related entities and the other two
lists represent the corresponding degrees.

Knowledge slot of the CADIAG-II implication operator MLM

knowledge:
type: data-driven;;
data:
(valueList, evidenceList, occurrenceList) := argument;

;;
evoke: /* direct call only */;;
logic:
if valueList is list then

resList := ();
i := 1;
for value in valueList do

result := null;

value := valueList[i];
occurrence := occurrenceList[i];
evidence := evidenceList[i];

occ0to1 := occurrence > fuzzy 0 and occurrence < fuzzy 1;
ev0to1 := evidence > fuzzy 0 and evidence < fuzzy 1;

if evidence = fuzzy 0 and occurrence > fuzzy 0 then
result := "omega";

elseif occurrence = fuzzy 0 and evidence > fuzzy 0 then
result := "omega";

elseif evidence is null and occurrence = fuzzy 1
and value is not null and value = fuzzy 0 then

result := fuzzy 0;
elseif evidence = fuzzy 0 and occurrence = fuzzy 0

and value is not null and value = fuzzy 1 then
result := fuzzy 0;

elseif ev0to1 = true then
if value is not null and value > fuzzy 0 then

if value < evidence then
result := value;

else
result := evidence;

endif;
elseif value is not null and value = fuzzy 0 then

if occurrence = fuzzy 1 then
result := fuzzy 0;

endif;
endif;

elseif evidence = fuzzy 1 then
if value > fuzzy 0 then

result := value;
endif;

endif;

resList := resList, result;
i := i + 1;

enddo;

C.2. INFERENCE OPERATOR 171

result := resList;
else

result := null;
value := valueList;
occurrence := occurrenceList;
evidence := evidenceList;

/******************************/
/* compute result analogously */
/******************************/

endif;

conclude true;;
action:
return result;;

C.2 Inference operator

The CADIAG-II inference operator is used to compute a new rating of an entity ei by
aggregating other related entities and the current rating of ei. The symbol ω represents a
conflicting rating, ε represents an unknown rating.

Table C.2: Definition of the CADIAG-II inference operator.

ei + ej ej = ε 0 < ej ej = 0 ej = 1 ej = ω

ei = ε ε ej 0 1 ω

0 < ei < 1 ei max(ei, ej) 0 1 ω

ei = 0 0 0 0 ω ω

ei = 1 1 1 ω 1 ω

ei = ω ω ω ω ω ω

It should be noted, that entities which where already rated as conflicting or are related
to conflicting entities are automatically rated as conflicting. Further, because of the use
of the ‘max’ operator the rating of an entity can only be increased during the inference
iterations or because of higher rated related entities.

The inference operator has been implemented as single MLM. The MLM is called directly
by other MLMs; the values which are to be aggregated are passed within a list as an
argument of the MLM. The table is implemented as a nested ‘if-then’ structure.

Knowledge slot of the CADIAG-II inference operator MLM

knowledge:
type: data-driven;;
data:
valuelist := argument;

;;
evoke: /* direct call only */;;

172 APPENDIX C. CADIAG-II

logic:
result := null;
if valuelist is list then

if count valuelist > 0 then
/* result is at least first element of list */
result := valuelist[1];
/* apply operator to every element */
for val in valuelist do

/* if result is conflicting, abort */
if result = "omega" or val = "omega"

or (result = fuzzy 0.0 and val = fuzzy 1.0)
or (result = fuzzy 1.0 and val = fuzzy 0.0) then
result := "omega";
conclude true;

elseif result = fuzzy 1.0 or val = fuzzy 1.0 then
result := fuzzy 1.0;

elseif result = fuzzy 0.0 or val = fuzzy 0.0 then
result := fuzzy 0.0;

elseif result is null and val is null then
result := null;

elseif result is null then
result := val;

elseif val is null then
result := result;

elseif val > result then
result := val;

endif;
enddo;

endif;
endif;
conclude true;;

action:
return result;;

C.3 Post-processing of radiological findings

maintenance:
title: _CADIAG x-ray post-processing;;
mlmname: X_RAY_POSTPROCESSING;;
arden: Version 2;;
version: Id;;
institution: Siemens Medical Solutions, University of Vienna;;
author: ;;
specialist: ;;
date: 2002-08-22;;
validation: testing;;

library:
purpose: This MLM sets those symptoms from x-ray group to false that still are null.

This only concerns symptoms related to joints and the spine;;
explanation: ;;
keywords: ;;
citations: ;;
links: ;;

C.3. POST-PROCESSING OF RADIOLOGICAL FINDINGS 173

knowledge:
type: data-driven;;
data:

valuesId := argument;

/* storage and database tools */
valueExtract := mlm ’value_extract’;
valueStore := mlm ’value_store’;

symptoms_to_process :=
"SF__494", "SF__747", "SF__753", "SF__754", "SF__755", "SF__756", "SF__757",
"SF__758", "SF__759", "SF__760", "SF__761", "SF__762", "SF__763", "SF__764",
"SF__765", "SF__766", "SF__767", "SF__768", "SF__769", "SF__770", "SF__771",
"SF__772", "SF__773", "SF__774", "SF__775", "SF_1001", "SF_1553", "SF_1642",
"SF_1643", "SF_1644", "SF_1645", "SF_1675", "SF_1717", "SF_1718", "SF_1741",
"SF_1753", "SF_1806", "SF_1810", "SF_1816", "SF_1819", "SF_1827", "SF_1828",
"SF_1829", "SF_1830", "SF_2175", "SF_2176", "SF_2177", "SF_2178", "SF_2538";

resList := call valueExtract with valuesId, symptoms_to_process;

;;
evoke: /* direct call only */;;
logic:

/* set all symptoms to false which are null */
result := ();
for aSymptom in resList do

if aSymptom is null then
result := result, false;

else
result := result, aSymptom;

endif;
enddo;

/* store results */
foo := call valueStore with valuesId, result, symptoms_to_process;
conclude true;;

action:
;;

end:

174 APPENDIX C. CADIAG-II

C.4 Ratings: differences to printout

Table C.3: Detailed differences of intermediate combination ratings between original
CADIAG-II system (O) and Arden Syntax-based system (A)

code 67002801 67008729 67009954 67013021 67018058 67019186 67021741
O A O A O A O A O A O A O A

PT 4 1 false
PT 5 0.1 false
PT 7 1 false
PT 8 1 false 1 false
PT 9 1 false
PT 10 1 false
PT 12 1 false 1 false
PT 13 1 false 0.5 false
PT 18 0.9 0.8 0.9 0.8
PT 20 1 false
PT 26 1 false
PT 30 1 false
PT 34 0.1 0.05 0.1 0.05 0.1 0.05
PT 38 1 false
PT 42 1 false 1 false
PT 50 1 false
PT 56 0.7 false
PT 61 0.63 false 1 false
PT 62 1 false
PT 110 1 false
PT 111 1 false
PT 113 1 false 1 false
PT 114 1 false
PT 115 1 false
PT 116 1 false
PT 117 1 false
PT 120 1 false 1 false
PT 121 1 false

This table shows for each patient its intermediate combinations that differ from the results
defined by the printout. The rating of each intermediate combination is shown as the
original value (column ‘O’) and the computed one (column ‘A’). Most differences are based
on missing data in the data base whereas those entries marked with a red background
color define differences resulting from differently computed diagnoses.

C.4. RATINGS: DIFFERENCES TO PRINTOUT 175

Table C.4: Detailed differences of diagnosis ratings (1)

arbnr tot. diffs DF 1 DF 4 DF 35 DF 62 DF 73 DF 74 DF 79
O A O A O A O A O A O A O A

67009954 8 6 0.9 0.8 0.9 null
67013021 8 5 0.9 0.8 0.9 0.8
67018058 3 3 null 0.4
67008729 10 3 0.9 null
67022098 11 2
67021741 13 2 0.9 null
67019186 14 2 0.5 0.2
67011150 12 2 0.5 0.4
67004316 10 2
67003174 13 2 0.8 0.1
67025526 16 1
67025313 12 1
67025178 13 1
67024635 16 1
67022357 7 1
67022047 12 1
67021172 9 1
67020907 10 1
67018317 16 1 0.0 0.5
67017663 8 1
67017019 6 1
67016527 11 1
67016233 9 1
67014451 8 1
67014028 7 1
67013862 13 1
67013773 15 1
67012084 14 1
67011789 11 1
67011045 12 1
67008095 16 1
67006351 14 1
67005460 14 1
67005452 10 1
67003905 12 1
67002801 7 1 0.5 0.2
67002119 10 1
67001546 14 1
67000566 11 1

This table and the following two tables show, for each patient and each diagnosis hypothesis
that has been rated differently by the Arden Syntax-based system, the original value
(column ‘O’) and the computed one (column ‘A’). Most differences are based on missing
data in the data base.

Those entries marked with a red background color show differences that are the result
of missing data in the data base. Those with a green background color indicate entities
that were rated differently because of ignored symptom-combination-to-diagnosis relation-
ships (compare section 4.3.2). Cells with a yellow background color markup differences
that where caused by ignored diagnosis-to-diagnosis relationships. The three entries with
a light blue background color show correctly computed values that, however, do not
show up on the printout.

The seven patient-ids that are highlighted by blue cells are those which included differences
in their intermediate combination ratings as shown earlier in table C.3.

176 APPENDIX C. CADIAG-II

T
ab

le
C

.5
:

D
et

ai
le

d
di

ffe
re

nc
es

of
di

ag
no

si
s

ra
ti

ng
s

(2
)

a
rb

n
r

D
F

8
3

D
F

8
4

D
F

8
6

D
F

8
7

D
F

1
1
9

D
F

1
3
7

D
F

1
5
7

D
F

1
6
1

D
F

1
6
5

D
F

1
7
6

D
F

2
0
8

D
F

5
2
9

O
A

O
A

O
A

O
A

O
A

O
A

O
A

O
A

O
A

O
A

O
A

O
A

6
7
0
0
9
9
5
4

0
.4

1
0
.0

2
0
.9

0
.0

1
6
7
0
1
3
0
2
1

0
.4

0
.3

2
0
.9

0
.8

6
7
0
1
8
0
5
8

n
u
ll

0
.4

6
7
0
0
8
7
2
9

0
.0

0
.4

6
6
7
0
2
2
0
9
8

0
.0

0
.5

1
n
u
ll

6
7
0
2
1
7
4
1

0
.9

n
u
ll

6
7
0
1
9
1
8
6

1
n
u
ll

6
7
0
1
1
1
5
0

0
.4

0
.2

9
6
7
0
0
4
3
1
6

0
.0

0
.4

3
1

n
u
ll

6
7
0
0
3
1
7
4

0
.4

0
.0

5
6
7
0
2
5
5
2
6

1
n
u
ll

6
7
0
2
5
3
1
3

1
n
u
ll

6
7
0
2
5
1
7
8

1
n
u
ll

6
7
0
2
4
6
3
5

1
n
u
ll

6
7
0
2
2
3
5
7

1
n
u
ll

6
7
0
2
2
0
4
7

0
.0

0
.5

6
7
0
2
1
1
7
2

0
.0

0
.4

6
6
7
0
2
0
9
0
7

1
n
u
ll

6
7
0
1
8
3
1
7

6
7
0
1
7
6
6
3

0
.0

0
.5

6
7
0
1
7
0
1
9

0
.0

0
.4

6
6
7
0
1
6
5
2
7

0
.0

0
.4

3
6
7
0
1
6
2
3
3

1
n
u
ll

6
7
0
1
4
4
5
1

1
n
u
ll

6
7
0
1
4
0
2
8

0
.0

0
.4

3
6
7
0
1
3
8
6
2

0
.0

0
.5

6
7
0
1
3
7
7
3

1
n
u
ll

6
7
0
1
2
0
8
4

1
n
u
ll

6
7
0
1
1
7
8
9

1
n
u
ll

6
7
0
1
1
0
4
5

1
n
u
ll

6
7
0
0
8
0
9
5

0
.0

0
.4

3
6
7
0
0
6
3
5
1

0
.8

0
.1

5
6
7
0
0
5
4
6
0

0
.0

0
.4

6
7
0
0
5
4
5
2

0
.0

0
.5

6
7
0
0
3
9
0
5

0
.6

5
0
.0

5
6
7
0
0
2
8
0
1

6
7
0
0
2
1
1
9

0
.0

0
.4

6
6
7
0
0
1
5
4
6

1
n
u
ll

6
7
0
0
0
5
6
6

1
n
u
ll

C.4. RATINGS: DIFFERENCES TO PRINTOUT 177

Table C.6: Detailed differences of diagnosis ratings (3)

arbnr DF 530 DF 532 DF 538 DF 539
O A O A O A O A

67009954 0.9 null 0.9 0.8
67013021 0.9 0.8
67018058 null 0.4
67008729 0.9 null
67022098
67021741
67019186
67011150
67004316
67003174
67025526
67025313
67025178
67024635
67022357
67022047
67021172
67020907
67018317
67017663
67017019
67016527
67016233
67014451
67014028
67013862
67013773
67012084
67011789
67011045
67008095
67006351
67005460
67005452
67003905
67002801
67002119
67001546
67000566

178 APPENDIX C. CADIAG-II

C.5 Result XML

The result of the Arden Syntax based inference process may either be a plain text file,
which is stored into the file system, or may be displayed on the screen as an XML file. The
document type definition (DTD) and a sample XSLT stylesheet to transform the XML
file into HTML are shown next.

C.5.1 DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT CADIAG (DIAGNOSES, SYMPTOM_COMB, INTERM_COMB, SYMPTOMS)>
<!ATTLIST CADIAG

id CDATA #REQUIRED
>

<!ELEMENT DIAGNOSES (TRUE, FALSE, NULL, OMEGA)>
<!ELEMENT SYMPTOM_COMB (TRUE, FALSE, NULL, OMEGA)>
<!ELEMENT INTERM_COMB (TRUE, FALSE, NULL, OMEGA)>
<!ELEMENT SYMPTOMS (TRUE, FALSE, NULL, OMEGA)>

<!ELEMENT TRUE (ENTRY+)>
<!ELEMENT FALSE (ENTRY+)>
<!ELEMENT NULL (ENTRY+)>
<!ELEMENT OMEGA (ENTRY+)>

<!ELEMENT ENTRY (LABEL, VALUES)>

<!ELEMENT LABEL (TEXT+)>
<!ATTLIST LABEL

code (PCDATA) #REQUIRED
cadiag (PCDATA) #REQUIRED

>

<!ELEMENT TEXT (#PCDATA)>
<!ATTLIST TEXT

lang (DE | EN) #REQUIRED
>

<!ELEMENT VALUES (VALUE)>
<!ATTLIST VALUES

score (PCDATA) #IMPLIED
>
<!ELEMENT VALUE (#PCDATA)>

C.5.2 XSLT stylesheet

Basically, all sections of a result file (diagnoses, symptoms, combinations) are processed
identically. Within one section, discrepancies and unknown entries are filtered out (by
comments). Rows (entries) are alternately colored by two colors which are defined in a
separate CSS file (see template for “ENTRY”).

Additionally, diagnoses are sorted by their value and are displayed with their scores.

<?xml version="1.0"?> <xsl:stylesheet version="1.0"

C.5. RESULT XML 179

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html>

<head>
<title>XSLT output</title>
<link rel="stylesheet" type="text/css"
href="http://146.254.106.170:8088/arden/arden.css"/>

</head>
<body>

<xsl:apply-templates/>
</body>

</html>
</xsl:template>

<xsl:template match="CADIAG">
<h1>Medizinisches Expertensystem CADIAG-II/ARDEN</h1>
<h2>Rheumatologische Erkrankungen (RSKA Baden)</h2>
<h3>Ergebnisse fuer Patient <xsl:value-of select="@id"/></h3>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="SYMPTOMS">
<h3>Symptome</h3>

<xsl:apply-templates/>
<hr/>

</xsl:template>

<xsl:template match="DIAGNOSES">
<h3>Diagnosen</h3>
<xsl:apply-templates>

<xsl:with-param name="sort">true</xsl:with-param>
</xsl:apply-templates>
<hr/>

</xsl:template>

<xsl:template match="INTERM_COMB">
<h3>Zwischenkombinationen</h3>

<xsl:apply-templates/>
<hr/>

</xsl:template>

<xsl:template match="SYMPTOM_COMB">
<h3>Symptomkombinationen</h3>

<xsl:apply-templates/>
<hr/>

</xsl:template>

<xsl:template match="TRUE">
<xsl:param name="sort"/>
<h4>Hypothesen:</h4>
<table>

<xsl:choose>
<xsl:when test="$sort=’true’">

<xsl:apply-templates select="ENTRY">

180 APPENDIX C. CADIAG-II

<xsl:sort select="VALUES/@score"
order="descending" data-type="number"/>

</xsl:apply-templates>
</xsl:when>
<xsl:otherwise>

<xsl:apply-templates/>
</xsl:otherwise>

</xsl:choose>
</table>

</xsl:template>

<xsl:template match="FALSE">
<h4>Ausgeschlossen:</h4>
<table>

<xsl:apply-templates/>
</table>

</xsl:template>

<xsl:template match="NULL">
<!--<h4>Unbekannt:</h4>
<!--<table>

<xsl:apply-templates/>
</table>-->

</xsl:template>

<xsl:template match="OMEGA">
<!--<h4>Widersprueche:</h4>
<table>

<xsl:apply-templates/>
</table>-->

</xsl:template>

<xsl:template match="ENTRY">
<xsl:choose>
<xsl:when test="VALUES/@score">

<xsl:if test="number(VALUES/@score) > 0.5 or
VALUES/child::node()[position()=1] = ’false’ ">

<xsl:if test="number(VALUES/child::node()[position()=1]) > 0.39 or
VALUES/child::node()[position()=1] = ’false’">

<xsl:if test="position() mod 2 = 0">
<tr class="BodyTableRow1">

<td>
<xsl:apply-templates select="VALUES"> </xsl:apply-templates>

</td>
<xsl:apply-templates select="LABEL">

<xsl:with-param name="cssclass">BodyTableRow1Colors1
</xsl:with-param>

</xsl:apply-templates>
</tr>

</xsl:if>
<xsl:if test="position() mod 2 = 1">

<tr class="BodyTableRow0">
<td>

<xsl:apply-templates select="VALUES"/>
</td>
<xsl:apply-templates select="LABEL">

C.5. RESULT XML 181

<xsl:with-param name="cssclass">BodyTableRow0Colors1
</xsl:with-param>

</xsl:apply-templates>
</tr>

</xsl:if>
</xsl:if>

</xsl:if>
</xsl:when>
<xsl:otherwise>

<xsl:if test="position() mod 2 = 0">
<tr class="BodyTableRow1">

<td>
<xsl:apply-templates select="VALUES">
</xsl:apply-templates>

</td>
<xsl:apply-templates select="LABEL">

<xsl:with-param name="cssclass">BodyTableRow1Colors1</xsl:with-param>
</xsl:apply-templates>

</tr>
</xsl:if>
<xsl:if test="position() mod 2 = 1">

<tr class="BodyTableRow0">
<td>

<xsl:apply-templates select="VALUES"/>
</td>
<xsl:apply-templates select="LABEL">

<xsl:with-param name="cssclass">BodyTableRow0Colors1</xsl:with-param>
</xsl:apply-templates>

</tr>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="VALUES">
<xsl:choose>

<xsl:when test="child::node()[position()=1]=’true’">+</xsl:when>
<xsl:when test="child::node()[position()=1]=’false’">-</xsl:when>
<xsl:when test="child::node()[position()=1]=’null’">?</xsl:when>
<xsl:otherwise><xsl:value-of select="child::node()[position()=1]"/>
</xsl:otherwise>

</xsl:choose>
<xsl:if test="./@score">

(<xsl:value-of select="round(number(@score)*100)"/>)
</xsl:if>

</xsl:template>

<xsl:template match="LABEL">
<xsl:param name="cssclass"/>
<td>

<xsl:apply-templates>
<xsl:with-param name="cssclass"><xsl:value-of select="$cssclass"/>
</xsl:with-param>

</xsl:apply-templates>
</td>
<td><xsl:value-of select="@code"/></td>

182 APPENDIX C. CADIAG-II

<td><xsl:value-of select="@cadiag"/></td>
</xsl:template>

<xsl:template match="TEXT">
<xsl:param name="cssclass"/>
<table>

<xsl:if test="$cssclass = ’BodyTableRow1Colors1’">
<tr class="BodyTableRow1">

<xsl:if test="@TOPIC != ’’">
<td class="BodyTableRow1Colors1" style="white-space:nowrap" >

<xsl:value-of select="@TOPIC"/>
</td>

</xsl:if>
<td>

<xsl:value-of select="node()"/>
</td>

</tr>
</xsl:if>
<xsl:if test="$cssclass = ’BodyTableRow0Colors1’">

<tr class="BodyTableRow0">
<xsl:if test="@TOPIC != ’’">

<td class="BodyTableRow0Colors1" style="white-space:nowrap">
<xsl:value-of select="@TOPIC"/>

</td>
</xsl:if>
<td>

<xsl:value-of select="node()"/>
</td>

</tr>
</xsl:if>

</table>
</xsl:template> </xsl:stylesheet>

C.5.3 Benchmark MLMs

C.5.3.1 Lookup values in list – main MLM

The main MLM uses different settings to benchmark the performance of intermediate
variables. Two MLMs that provide the lookup method are referenced and used for every
setting.

The first MLM that is implemented in pure Arden Syntax accepts a list of intermediate
variable labels, a list of the corresponding values, and a list of labels of those variables
that have to be looked up. The second one that uses a Java class to implement the value
storage accepts the id as explained in section 3.2.6 and a list of labels of those variables
that have to be looked up.

maintenance:
title: CADIAG test lookup data in lists;;
mlmname: LookupTest;;
arden: Version 2f;;
version: $Id: lookuptest.mlm,v 1.1 2002/09/10 07:27:16 tiffsvgt Exp $;;
institution: Siemens Medical Solutions, University of Vienna;;
author: ;;
specialist: ;;

C.5. RESULT XML 183

date: 2001-08-22;;
validation: testing;;

library:
purpose: ;;
explanation: ;;
keywords: ;;
citations: ;;
links: ;;

knowledge:
type: goal-directed;;
data:
event1 := event {cadiagLookupTest};
message_send := mlm ’message_send’;
dest1 := destination {console:log};

/* storage and database tools */
valueStorageInit := mlm ’storage_init’;
valueStore := mlm ’value_store’;

testit := mlm ’LookupTest2’;
testit2 := mlm ’LookupTest3’;

;;
evoke:
event1;;

logic:
/* list of all intermediate variable identifiers

(about 2500 string constants) */
labels := "AA07AACA", "AA07AACT", ...;

/* list of integer numbers that stand for the intermediate variable values */
values := (); i := 1;
for aLabel in labels do

values := values, i;
i:=i+1;

enddo;

/* initialize database storage for DB performance test*/
valuesId := call valueStorageInit;
foo := call valueStore with valuesId, values, labels;

/* lookup five values by linear search algorithm (Arden Syntax) */
/* first five values */
testlist := "AA07AACA", "AA07AACT", "AA07AAFAC", "AA07AAFAE", "AA07AAFAF";
results := call testit with labels, values, testlist;

/* last five values */
testlist := "SF____5", "SF____6", "SF____7", "SF____8", "SF____9";
results := call testit with labels, values, testlist;

/* lookup five values by interface (Java class) */
/* first five values */
testlist := "AA07AACA", "AA07AACT", "AA07AAFAC", "AA07AAFAE", "AA07AAFAF";
results := call testit2 with valuesId, testlist;

184 APPENDIX C. CADIAG-II

/* last five values */
testlist := "SF____5", "SF____6", "SF____7", "SF____8", "SF____9";
results := call testit2 with valuesId, testlist;

/* prepare list of entities used by intermediate combinations
(327 values) */

testlist := "DF____1", "DF___52", "DF__107", ...;

/* lookup values by linear search algorithm (Arden Syntax) */
results := call testit with labels, values, testlist;

/* lookup values by interface (Java class) */
results := call testit2 with valuesId, testlist;

/* prepare list of entities used by rules_s2d_compact
(1023 values) */

testlist := "SF____1", "SF____2", "SF____3", ...;

/* lookup values by linear search algorithm (Arden Syntax) */
results := call testit with labels, values, testlist;

/* lookup values by interface (Java class) */
results := call testit2 with valuesId, testlist;

conclude true;;
action:
;;

end:

C.5.3.2 Lookup values in list – linear search MLM

maintenance:
title: _CADIAG test lookup data in lists;;
mlmname: LookupTest2;;
arden: Version 2f;;
version: $Id: lookuptest2.mlm,v 1.1 2002/09/10 07:27:16 tiffsvgt Exp $;;
institution: Siemens Medical Solutions, University of Vienna;;
author: ;;
specialist: ;;
date: 2001-08-22;;
validation: testing;;

library:
purpose: ;;
explanation: ;;
keywords: ;;
citations: ;;
links: ;;

knowledge:
type: goal-directed;;
data:
(labels, values, lookup) := argument;

C.5. RESULT XML 185

;;
evoke: ;;
logic:
result := ();
for aLabel in lookup do

notfound := true;
elements := count labels;
i := 1;

while (notfound = true and i<= elements) do
if aLabel = labels[i] then

notfound := false;
else

i := i + 1;
endif;

enddo;

if (notfound = false) then
result := result, values[i];

else
result := result, null;

endif;

enddo;

conclude true;;
action:
return result;
;;

end:

The algorithm could be improved by a binary search, if the list of labels would be ordered.
As the list is generally not ordered (and the option to use the sort operator is not provided,
since the corresponding values in the ‘values list’ cannot be re-sorted analogously) a linear
search algorithm has been used.

C.5.3.3 Lookup values in list – Java interface MLM

maintenance:
title: _CADIAG test lookup data in lists;;
mlmname: LookupTest3;;
arden: Version 2f;;
version: $Id: lookuptest2.mlm,v 1.1 2002/09/10 07:27:16 tiffsvgt Exp $;;
institution: Siemens Medical Solutions, University of Vienna;;
author: ;;
specialist: ;;
date: 2001-08-22;;
validation: testing;;

library:
purpose: ;;
explanation: ;;
keywords: ;;
citations: ;;
links: ;;

186 APPENDIX C. CADIAG-II

knowledge:
type: goal-directed;;
data:
valueStorage_get := interface

{ class;de.medstage.projects.cadiag.ardenifc.ValueStorage;get };

(valuesId, testlist) := argument;
;;
evoke: ;;
logic:
result := call valueStorage_get with valuesId, testlist;
conclude true;;

action:
return result;
;;

end:

Appendix D

MLM XML representation (DTD)

This is the document-type definition used for the XML representation by the rules engine.
It is transformed by an XSLT stylesheet into HTML. The XSLT file is not shown, as. . .

<?xml version="1.0" encoding="UTF-8"?>
<!-- doctype mlm ArdenSyntaxMlm.dtd -->
<!ELEMENT MLM (CATEGORY+)>
<!ELEMENT CATEGORY (SLOT)+>
<!ATTLIST CATEGORY

name CDATA #REQUIRED
>
<!ELEMENT SLOT (#PCDATA | CODEBLOCK)*>
<!ATTLIST SLOT

type (coded | textual | structured) #REQUIRED
name CDATA #REQUIRED

>
<!ELEMENT CODEBLOCK (STATEMENT)*>
<!ELEMENT STATEMENT (IDENTIFIER | DATA | OPERATOR | CODEBLOCK)*>
<!ATTLIST STATEMENT

name (assignment | ifthen | while | for | conclude | write | call
| evoke | return) #REQUIRED

>
<!ELEMENT OPERATOR (OPNAME?, PARAMETER, OPNAME?, PARAMETER?, OPNAME?)+>
<!ELEMENT PARAMETER (IDENTIFIER | DATA | OPERATOR)*>
<!ELEMENT OPNAME (#PCDATA)>
<!ELEMENT IDENTIFIER (#PCDATA | IDENTIFIER)*>
<!ATTLIST IDENTIFIER

type (group | single) #REQUIRED
>
<!ELEMENT DATA (ORDERED | TRUTHVALUE | LIST | INTERNAL | REFERENCE)>
<!ELEMENT LIST (ORDERED | TRUTHVALUE)*>
<!ELEMENT ORDERED (#PCDATA)>
<!ATTLIST ORDERED

type (number | time | duration | string | null) #REQUIRED
>
<!ELEMENT TRUTHVALUE (#PCDATA)>
<!ATTLIST TRUTHVALUE

type (crisp | fuzzy) "crisp"
>
<!ELEMENT INTERNAL (#PCDATA)>
<!ATTLIST INTERNAL

187

188 APPENDIX D. MLM XML REPRESENTATION (DTD)

type (readmapping | destination | term | argument | null | now |
eventtime | triggertime | patientid) #REQUIRED

>
<!ELEMENT REFERENCE (MLMNAME, INSTNAME?)>
<!ATTLIST REFERENCE

type (mlm | lv) "mlm"
>
<!ELEMENT MLMNAME (#PCDATA)>
<!ELEMENT INSTNAME (#PCDATA)>

Appendix E

UltraEdit syntax highlighting
scheme

To edit Medical Logic Modules the ‘UltaEdit’ editor has been used. This text editor
supports syntax highlighting schemes that can be customized by editing a word-list file.

/L6"Medical Logic Module"
Line Comment = //
Block Comment On = /* Block Comment Off = */
File Extensions = MLM

/Delimiters = ~!@$%^&*()+=|\/{}[];"’<> ,.?/
/Indent Strings = "{"
/Unindent Strings = "}"
/Function String = "%[^t]++sub[^t{]"

/C1 end: knowledge: library: maintenance:
/C2 action: author: citations: data: date: evoke: explanation:
filename: institution: keywords: links: logic: purpose:
specialist: title: type: validation: version: mlmname:
arden: author: action:

189

